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Abstract

I describe the phenomenology of a model of supersymmetry breaking in the presence
of a tiny (tuneable) positive cosmological constant. It utilises a single chiral multiplet with
a gauged shift symmetry, that can be identified with the string dilaton (or an appropriate
compactification modulus). The model is coupled to the MSSM, leading to calculable soft
supersymmetry breaking masses and a distinct low energy phenomenology that allows to
differentiate it from other models of supersymmetry breaking and mediation mechanisms.
We also study the question if this model can lead to inflation by identifying the dilaton
with the inflaton. We find that this is possible if the Kähler potential is modified by a term
that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau
around the maximum of the scalar potential, depending on two extra parameters. We then
generalise this model to a general class where the inflation is driven by supersymmetry
breaking with the superpartner of the goldstino (sgoldstino) playing the role of the infla-
ton. Imposing an R-symmetry allows to satisfy easily the slow-roll conditions, avoiding
the so-called η-problem, and leads to two different classes of small field inflation mod-
els; they are characterised by an inflationary plateau around the maximum of the scalar
potential, where R-symmetry is either restored or spontaneously broken, with the inflaton
rolling down to a minimum describing the present phase of our Universe. The models
agree with cosmological observations and predict a tensor-to-scalar ratio of primordial
perturbations 10−9 <∼ r <∼ 10−4 and an inflation scale 1010 GeV <∼ H∗ <∼ 1012 GeV.

1. Introduction
If String Theory is a fundamental theory of Nature and not just a tool for studying
systems with strongly coupled dynamics, it should be able to describe at the same
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time particle physics and cosmology, which are phenomena that involve very dif-
ferent scales from the microscopic four-dimensional (4d) quantum gravity length
of 10−33 cm to large macroscopic distances of the size of the observable Universe
∼ 1028 cm spanned a region of about 60 orders of magnitude. In particular, be-
sides the 4d Planck mass, there are three very different scales with very different
physics corresponding to the electroweak, dark energy and inflation. These scales
might be related via the scale of the underlying fundamental theory, such as string
theory, or they might be independent in the sense that their origin could be based
on different and independent dynamics. An example of the former constraint and
more predictive possibility is provided by TeV strings with a fundamental scale
at low energies due for instance to large extra dimensions transverse to a four-
dimensional braneworld forming our Universe [1]. In this case, the 4d Planck
mass is emergent from the fundamental string scale and inflation should also hap-
pen around the same scale [2].

Here, we will adopt the second more conservative approach, assuming that
all three scales have an independent dynamical origin. Moreover, we will assume
the presence of low energy supersymmetry that allows for an elegant solution
of the mass hierarchy problem, a unification of fundamental forces as indicated
by low energy data and a natural dark matter candidate due to an unbroken R-
parity. The assumption of independent scales implies that supersymmetry break-
ing should be realized in a metastable de Sitter vacuum with an infinitesimally
small (tunable) cosmological constant independent of the supersymmetry break-
ing scale that should be in the TeV region. In a recent work [3], we studied a
simple N = 1 supergravity model having this property and motivated by string
theory. Besides the gravity multiplet, the minimal field content consists of a chiral
multiplet with a shift symmetry promoted to a gauged R-symmetry using a vec-
tor multiplet. In the string theory context, the chiral multiplet can be identified
with the string dilaton (or an appropriate compactification modulus) and the shift
symmetry associated to the gauge invariance of a two-index antisymmetric tensor
that can be dualized to a (pseudo)scalar. The shift symmetry fixes the form of the
superpotential and the gauging allows for the presence of a Fayet-Iliopoulos (FI)
term, leading to a supergravity action with two independent parameters that can be
tuned so that the scalar potential possesses a metastable de Sitter minimum with
a tiny vacuum energy (essentially the relative strength between the F- and D-term
contributions). A third parameter fixes the Vacuum Expectation Value (VEV) of
the string dilaton at the desired (phenomenologically) weak coupling regime. An
important consistency constraint of our model is anomaly cancellation which has
been studied in [5] and implies the existence of additional charged fields under
the gauged R-symmetry.

In a more recent work [6], we analyzed a small variation of this model which
is manifestly anomaly free without additional charged fields and allows to couple
in a straight forward way a visible sector containing the minimal supersymmetric
extension of the Standard Model (MSSM) and studied the mediation of super-
symmetry breaking and its phenomenological consequences. It turns out that an
additional ‘hidden sector’ field z is needed to be added for the matter soft scalar
masses to be non-tachyonic; although this field participates in the supersymmetry
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breaking and is similar to the so-called Polonyi field, it does not modify the main
properties of the metastable de Sitter (dS) vacuum. All soft scalar masses, as well
as trilinear A-terms, are generated at the tree level and are universal under the
assumption that matter kinetic terms are independent of the ‘Polonyi’ field, since
matter fields are neutral under the shift symmetry and supersymmetry breaking is
driven by a combination of the U(1) D-term and the dilaton and z-field F-term.
Alternatively, a way to avoid the tachyonic scalar masses without adding the extra
field z is to modify the matter kinetic terms by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use
a field representation in which the gauged shift symmetry corresponds to an or-
dinary U(1) and not an R-symmetry. The two representations differ by a Kähler
transformation that leaves the classical supergravity action invariant. However, at
the quantum level, there is a Green-Schwarz term generated that amounts an ex-
tra dilaton dependent contribution to the gauge kinetic terms needed to cancel the
anomalies of the R-symmetry. This creates an apparent puzzle with the gaugino
masses that vanish in the first representation but not in the latter. The resolution
to the puzzle is based to the so called anomaly mediation contributions [7, 8] that
explain precisely the above apparent discrepancy. It turns out that gaugino masses
are generated at the quantum level and are thus suppressed compared to the scalar
masses (and A-terms).

This model has the necessary ingredients to be obtained as a remnant of mod-
uli stabilisation within the framework of internal magnetic fluxes in type I string
theory, turned on along the compact directions for several abelian factors of the
gauge group. All geometric moduli can in principle be fixed in a supersymmetric
way, while the shift symmetry is associated to the 4d axion and its gauging is a
consequence of anomaly cancellation [9, 10].

We then make an attempt to connect the scale of inflation with the electroweak
and supersymmetry breaking scales within the same effective field theory, that at
the same time allows the existence of an infinitesimally small (tuneable) positive
cosmological constant describing the present dark energy of the universe. We
thus address the question whether the same scalar potential can provide inflation
with the dilaton playing also the role of the inflaton at an earlier stage of the
universe evolution [11]. We show that this is possible if one modifies the Kähler
potential by a correction that plays no role around the minimum, but creates an
appropriate plateau around the maximum. In general, the Kähler potential receives
perturbative and non-perturbative corrections that vanish in the weak coupling
limit. After analysing all such corrections, we find that only those that have the
form of (Neveu-Schwarz) NS5-brane instantons can lead to an inflationary period
compatible with cosmological observations. The scale of inflation turns out then
to be of the order of low energy supersymmetry breaking, in the TeV region. On
the other hand, the predicted tensor-to-scalar ratio is too small to be observed.

Inflationary models [12] in supergravity1 suffer in general from several prob-
lems, such as fine-tuning to satisfy the slow-roll conditions, large field initial con-
ditions that break the validity of the effective field theory, and stabilisation of the

1For reviews on supersymmetric models of inflation, see for example [13].
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(pseudo) scalar companion of the inflaton arising from the fact that bosonic com-
ponents of superfields are always even. The simplest argument to see the fine
tuning of the potential is that a canonically normalised kinetic term of a complex
scalar field X corresponds to a quadratic Kähler potential K = XX̄ that brings
one unit contribution to the slow-roll parameter η = V ′′/V , arising from the eK

proportionality factor in the expression of the scalar potential V . This problem
can be avoided in models with no-scale structure where cancellations arise natu-
rally due to non-canonical kinetic terms leading to potentials with flat directions
(at the classical level). However, such models require often trans-Planckian initial
conditions that invalidate the effective supergravity description during inflation.
A concrete example where all these problems appear is the Starobinsky model of
inflation [14], despite its phenomenological success.

All three problems above are solved when the inflaton is identified with the
scalar component of the goldstino superfield2, in the presence of a gauged R-
symmetry [16]. Indeed, the superpotential is in that case linear and the big con-
tribution to η described above cancels exactly. Since inflation arises in a plateau
around the maximum of the scalar potential (hill-top) no large field initial condi-
tions are needed, while the pseudo-scalar companion of the inflaton is absorbed
into the R-gauge field that becomes massive, leading the inflaton as a single scalar
field present in the spectrum. This model provides therefore a minimal realisation
of natural small-field inflation in supergravity, compatible with present observa-
tions, as we show below. Moreover, it allows the presence of a realistic minimum
describing our present Universe with an infinitesimal positive vacuum energy aris-
ing due to a cancellation between an F- and D-term contributions to the scalar po-
tential, without affecting the properties of the inflationary plateau, along the lines
of Ref. [3, 11, 4].

On general grounds, there are two classes of such models depending on whether
the maximum corresponds to a point of unbroken (case 1) or broken (case 2) R-
symmetry. The latter corresponds actually to a generalisation of the model we
discussed above [11], inspired by string theory [3]. It has the same field content
but in a different field basis with a chiral multiplet S ∝ ln X playing the role of
the string dilaton. Thus, S has a shift symmetry which is actually an R-symmetry
gauged by a vector multiplet and the superpotential is a single exponential. The
scalar potential has a minimum with a tuneable vacuum energy and a maximum
that can produce inflation when appropriate corrections are included in the Kähler
potential. In these coordinates R-symmetry is restored at infinity, corresponding
to the weak coupling limit. Small field inflation is again guaranteed consistently
with the validity of the effective field theory.

2. Conventions
Throughout this paper we use the conventions of [17]. A supergravity theory is
specified (up to Chern-Simons terms) by a Kähler potentialK , a superpotential W,
and the gauge kinetic functions fAB(z). The chiral multiplets zα, χα are enumerated

2See [15] for earlier work relating supersymmetry and inflation.
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by the index α and the indices A, B indicate the different gauge groups. Classically,
a supergravity theory is invariant under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),

W(z) −→ e−κ
2 J(z)W(z), (1)

where κ is the inverse of the reduced Planck mass, mp = κ−1 = 2.4 × 1015 TeV.
The gauge transformations of chiral multiplet scalars are given by holomorphic
Killing vectors, i.e. δzα = θAkαA(z), where θA is the gauge parameter of the gauge
group A. The Kähler potential and superpotential need not be invariant under this
gauge transformation, but can change by a Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (2)

provided that the gauge transformation of the superpotential satisfies δW = −θAκ2rA(z)W.
One then has from δW = Wαδzα

WαkαA = −κ2rAW, (3)

where Wα = ∂αW and α labels the chiral multiplets. The supergravity theory can
then be described by a gauge invariant function

G = κ2K + log(κ6WW̄). (4)

The scalar potential is given by

V = VF + VD

VF = eκ
2K

(
−3κ2WW̄ + ∇αWgαβ̄∇̄β̄W̄

)
VD =

1
2

(Re f )−1 ABPAPB, (5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW(z) + κ2(∂αK)W(z). (6)

The moment maps PA are given by

PA = i(kαA∂αK − rA). (7)

In this paper we will be concerned with theories having a gauged R-symmetry, for
which rA(z) is given by an imaginary constant rA(z) = iκ−2ξ. In this case, κ−2ξ is
a Fayet-Iliopoulos [18] constant parameter.
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3. The model
The starting point is a chiral multiplet S and a vector multiplet associated with a
shift symmetry of the scalar component s of the chiral multiplet S

δs = −icθ , (8)

and a string-inspired Kähler potential of the form −p log(s + s̄). The most gen-
eral superpotential is either a constant W = κ−3a or an exponential superpotential
W = κ−3aebs (where a and b are constants). A constant superpotential is (ob-
viously) invariant under the shift symmetry, while an exponential superpotential
transforms as W → We−ibcθ, as in eq. (3). In this case the shift symmetry becomes
a gauged R-symmetry and the scalar potential contains a Fayet-Iliopoulos term.
Note however that by performing a Kähler transformation (1) with J = κ−2bs, the
model can be recast into a constant superpotential at the cost of introducing a lin-
ear term in the Kähler potential δK = b(s + s̄). Even though in this representation,
the shift symmetry is not an R-symmetry, we will still refer to it as U(1)R. The
most general gauge kinetic function has a constant term and a term linear in s,
f (s) = δ + βs.

To summarise,3

K(s, s̄) = −p log(s + s̄) + b(s + s̄),
W(s) = a,
f (s) = δ + βs , (9)

where we have set the mass units κ = 1. The constants a and b together with
the constant c in eq. (8) can be tuned to allow for an infinitesimally small cos-
mological constant and a TeV gravitino mass. For b > 0, there always exists a
supersymmetric AdS (anti-de Sitter) vacuum at 〈s + s̄〉 = b/p, while for b = 0
(and p < 3) there is an AdS vacuum with broken supersymmetry. We therefore
focus on b < 0. In the context of string theory, S can be identified with a com-
pactification modulus or the universal dilaton and (for negative b) the exponential
superpotential may be generated by non-perturbative effects.

The scalar potential is given by:

V = VF + VD

VF = a2e
b
l lp−2

{
1
p

(pl − b)2 − 3l2
}

l = 1/(s + s̄)

VD = c2 l
β + 2δl

(pl − b)2 (10)

In the case where S is the string dilaton, VD can be identified as the contribution
of a magnetized D-brane, while VF for b = 0 and p = 2 coincides with the

3In superfields the shift symmetry (8) is given by δS = −icΛ, where Λ is the superfield
generalization of the gauge parameter. The gauge invariant Kähler potential is then given by
K(S , S̄ ) = −pκ−2 log(S + S̄ + cVR) + κ−2b(S + S̄ + cVR), where VR is the gauge superfield of
the shift symmetry.
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tree-level dilaton potential obtained by considering string theory away its critical
dimension [19]. For p ≥ 3 the scalar potential V is positive and monotonically
decreasing, while for p < 3, its F-term part VF is unbounded from below when
s + s̄ → 0. On the other hand, the D-term part of the scalar potential VD is
positive and diverges when s + s̄→ 0 and for various values for the parameters an
(infinitesimally small) positive (local) minimum of the potential can be found.

If we restrict ourselves to integer p, tunability of the vacuum energy restricts
p = 2 or p = 1 when f (s) = s, or p = 1 when the gauge kinetic function is
constant. For p = 2 and f (s) = s, the minimization of V yields:

b/l = −ρ0 ≈ −0.183268 , p = 2 (11)
a2

bc2 = A2(−ρ0) + B2(−ρ0)
Λ

b3c2 ≈ −50.6602 + O(Λ), (12)

where Λ is the value of V at the minimum (i.e. the cosmological constant), −ρ0 is
the negative root of the polynomial −x5 + 7x4 − 10x3 − 22x2 + 40x + 8 compatible
with (12) for Λ = 0 and A2(α), B2(α) are given by

A2(α) = 2e−α
−4 + 4α − α2

α3 − 4α2 − 2α
; B2(α) = 2

α2e−α

α2 − 4α − 2
(13)

It follows that by carefully tuning a and c, Λ can be made positive and arbitrarily
small independently of the supersymmetry breaking scale. A plot of the scalar
potential for certain values of the parameters is shown in figure 1.

Figure 1: A plot of the scalar potential for p = 2, b = −1, δ = 0, β = 1 and a given
by equation (12) for c = 1 (black curve) and c = 0.7 (red curve).

At the minimum of the scalar potential, for nonzero a and b < 0, supersym-
metry is broken by expectation values of both an F and D-term. Indeed the F-term
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and D-term contributions to the scalar potential are

VF |s+s̄= −ρ0
b

=
1
2

a2b2e−ρ0

(
1 +

2
ρ0

)2

> 0,

VD|s+s̄= −ρ0
b

= −
b3c2

ρ0

(
1 +

2
ρ0

)2

> 0 . (14)

The gravitino mass term is given by

(m3/2)2 = eG =
a2b2

ρ2
0

e−ρ0 . (15)

Due to the Stueckelberg coupling, the imaginary part of s (the axion) gets eaten by
the gauge field, which acquires a mass. On the other hand, the Goldstino, which
is a linear combination of the fermion of the chiral multiplet χ and the gaugino
λ gets eaten by the gravitino. As a result, the physical spectrum of the theory
consists (besides the graviton) of a massive scalar, namely the dilaton, a Majorana
fermion, a massive gauge field and a massive gravitino. All the masses are of the
same order of magnitude as the gravitino mass, proportional to the same constant
a (or c related by eq. (12) where b is fixed by eq. (11)), which is a free parameter
of the model. Thus, they vanish in the same way in the supersymmetric limit
a→ 0.

The local dS minimum is metastable since it can tunnel to the supersymmetric
ground state at infinity in the s-field space (zero coupling). It turns out however
that it is extremely long lived for realistic perturbative values of the gauge cou-
pling l ' 0.02 and TeV gravitino mass and, thus, practically stable; its decay rate
is [5]:

Γ ∼ e−B with B ≈ 10300 . (16)

4. Coupling a visible sector
The guideline to construct a realistic model keeping the properties of the toy
model described above is to assume that matter fields are invariant under the shift
symmetry (8) and do not participate in the supersymmetry breaking. In the sim-
plest case of a canonical Kähler potential, MSSM-like fields φ can then be added
as:

K = −κ−2 log(s + s̄) + κ−2b(s + s̄) +
∑

ϕϕ̄,

W = κ−3a + WMS S M, (17)

where WMS S M(φ) is the usual MSSM superpotential. The squared soft scalar
masses of such a model can be shown to be positive and close to the square of
the gravitino mass (TeV2). On the other hand, for a gauge kinetic function with
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a linear term in s, β , 0 in eq. (9), the Lagrangian is not invariant under the shift
symmetry

δL = −θ
βc
8
εµνρσFµνFρσ. (18)

and its variation should be canceled. As explained in Ref. [5], in the ’frame’
with an exponential superpotential the R-charges of the fermions in the model
can give an anomalous contribution to the Lagrangian. In this case the ‘Green-
Schwarz’ term ImsFF̃ can cancel quantum anomalies. However as shown in [5],
with the minimal MSSM spectrum, the presence of this term requires the existence
of additional fields in the theory charged under the shift symmetry.

Instead, to avoid the discussion of anomalies, we focus on models with a
constant gauge kinetic function. In this case the only (integer) possibility4 is p =
1. The scalar potential is given by (10) with β = 0, δ = p = 1. The minimization
yields to equations similar to (11), (12) and (13) with a different value of ρ0 and
functions A1 and B1 given by:

b〈s + s̄〉 = −ρ0 ≈ −0.233153
bc2

a2 = A1(−ρ0) + B1(−ρ0)
Λ

a2b
≈ −0.359291 + O(Λ) (19)

A1(α) = 2eαα
3 − (α − 1)2

(α − 1)2 , B1(α) =
2α2

(α − 1)2 ,

where −ρ0 is the negative root of −3 + (ρ − 1)2(2 − ρ2/2) = 0 close to −0.23,
compatible with the second constraint for Λ = 0. However, this model suffers
from tachyonic soft masses when it is coupled to the MSSM, as in (17). To cir-
cumvent this problem, one can add an extra hidden sector field which contributes
to (F-term) supersymmetry breaking. Alternatively, the problem of tachyonic soft
masses can also be solved if one allows for a non-canonical Kähler potential in
the visible sector, which gives an additional contribution to the masses through
the D-term.

Let us discuss first the addition of an extra hidden sector field z (similar to
the so-called Polonyi field [20]). The Kähler potential, superpotential and gauge
kinetic function are given by

K = −κ−2 log(s + s̄) + κ−2b(s + s̄) + zz̄ +
∑

ϕϕ̄ ,

W = κ−3a(1 + γκz) + WMSSM(ϕ) ,
f (s) = 1 , fA = 1/g2

A , (20)

where A labels the Standard Model gauge group factors and γ is an additional
constant parameter. The existence of a tuneable dS vacuum with supersymmetry

4If f (s) is constant, the leading contribution to VD when s + s̄→ 0 is proportional to 1/(s + s̄)2,
while the leading contribution to VF is proportional to 1/(s + s̄)p. It follows that p < 2; if p > 2, the
potential is unbounded from below, while if p = 2, the potential is either positive and monotonically
decreasing or unbounded from below when s + s̄→ 0 depending on the values of the parameters.
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breaking and non-tachyonic scalar masses implies that γ must be in a narrow
region:

0.5 <∼ γ <∼ 1.7 . (21)

In the above range of γ the main properties of the toy model described in the
previous section remain, while Rez and its F-auxiliary component acquire non
vanishing VEVs. All MSSM soft scalar masses are then equal to a universal value
m0 of the order of the gravitino mass, while the B0 Higgs mixing parameter is also
of the same order:

m2
0 = m2

3/2

[
(σs + 1) +

(γ + t + γt)2

(1 + γt)2

]
,

A0 = m3/2

[
(σs + 3) + t

(γ + t + γt2)
1 + γt

]
,

B0 = m3/2

[
(σs + 2) + t

(γ + t + γt2)
(1 + γt)

]
, (22)

where σs = −3 + (ρ + 1)2 with ρ = −b(s + s̄) and t ≡ 〈Re z〉 determined by
the minimization conditions as functions of γ. Also, A0 is the soft trilinear scalar
coupling in the standard notation, satisfying the relation [21]

A0 = B0 + m3/2 . (23)

On the other hand, the gaugino masses appear to vanish at tree-level since
the gauge kinetic functions are constants (see (10.)). However, as mentioned in
Section 3., this model is classically equivalent to the theory5

K = −κ−2 log(s + s̄) + zz̄ +
∑
ϕ

ϕϕ̄,

W =
(
κ−3a(1 + z) + WMSSM(ϕ)

)
ebs , (24)

obtained by applying a Kähler transformation (1) with J = −κ−2bs. All classical
results remain the same, such as the expressions for the scalar potential and the
soft scalar masses (22), but now the shift symmetry (8) of s became a gauged
R-symmetry since the superpotential transforms as W −→ We−ibcθ. Therefore,
all fermions (including the gauginos and the gravitino) transform6 as well under
this U(1)R, leading to cubic U(1)3

R and mixed U(1) × GMSSM anomalies. These
anomalies are cancelled by a Green-Schwarz (GS) counter term that arises from a
quantum correction to the gauge kinetic functions:

fA(s) = 1/g2
A + βAs with βA =

b
8π2

(
TRA − TGA

)
, (25)

5This statement is only true for supergravity theories with a non-vanishing superpotential where
everything can be defined in terms of a gauge invariant function G = κ2K + log(κ6WW̄) [22].

6The chiral fermions, the gauginos and the gravitino carry a charge bc/2, −bc/2 and −bc/2
respectively.
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where TG is the Dynkin index of the adjoint representation, normalized to N for
S U(N), and TR is the Dynkin index associated with the representation R of dimen-
sion dR, equal to 1/2 for the S U(N) fundamental. An implicit sum over all matter
representations is understood. It follows that gaugino masses are non-vanishing
in this representation, creating a puzzle on the quantum equivalence of the two
classically equivalent representations. The answer to this puzzle is based on the
fact that gaugino masses are present in both representations and are generated at
one-loop level by an effect called Anomaly Mediation [7, 8]. Indeed, it has been
argued that gaugino masses receive a one-loop contribution due to the super-Weyl-
Kähler and sigma-model anomalies, given by [8]:

M1/2 = −
g2

16π2

[
(3TG − TR)m3/2 + (TG − TR)KαFα + 2

TR

dR
(log detK|R ′′),αFα

]
.

(26)
The expectation value of the auxiliary field Fα, evaluated in the Einstein frame is
given by

Fα = −eκ
2K/2gαβ̄∇̄β̄W̄. (27)

Clearly, for the Kähler potential (10.) or (24) the last term in eq. (26) vanishes.
However, the second term survives due to the presence of Planck scale VEVs
for the hidden sector fields s and z. Since the Kähler potential between the two
representations differs by a linear term b(s + s̄), the contribution of the second
term in eq. (26) differs by a factor

δmA =
g2

A

16π2 (TG − TR)beκ
2K/2gαβ̄∇̄β̄W̄, (28)

which exactly coincides with the ‘direct’ contribution to the gaugino masses due
to the field dependent gauge kinetic function (25) (taking into account a rescaling
proportional to g2

A due to the non-canonical kinetic terms).
We conclude that even though the models (10.) and (24) differ by a (classi-

cal) Kähler transformation, they generate the same gaugino masses at one-loop.
While the one-loop gaugino masses for the model (10.) are generated entirely by
eq. (26), the gaugino masses for the model (24) after a Kähler transformation have
a contribution from eq. (26) as well as from a field dependent gauge kinetic term
whose presence is necessary to cancel the mixed U(1)R × G anomalies due to
the fact that the extra U(1) has become an R-symmetry giving an R-charge to all
fermions in the theory. Using (26), one finds:

M1/2 = −
g2

16π2 m3/2

[
(3TG − TR) − (TG − TR)

(
(ρ + 1)2 + t

γ + t + γt2

1 + γt

)]
. (29)

For U(1)Y we have TG = 0 and TR = 11, for S U(2) we have TG = 2 and TR = 7,
and for S U(3) we have TG = 3 and TR = 6, such that for the different gaugino
masses this gives (in a self-explanatory notation):

M1 = 11
g2

Y

16π2 m3/2

[
1 − (ρ + 1)2 −

t(γ + t + γt)
1 + γt

]
,
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M2 =
g2

2

16π2 m3/2

[
1 − 5(ρ + 1)2 − 5

t(γ + t + γt2)
1 + γt

]
,

M3 = −3
g2

3

16π2 m3/2

[
1 + (ρ + 1)2 +

t(γ + t + γt2)
1 + γt

]
. (30)

5. Phenomenology
The results for the soft terms calculated in the previous section, evaluated for
different values of the parameter γ are summarised in Table 1. For every γ, the
corresponding t and ρ are calculated by imposing a vanishing cosmological con-
stant at the minimum of the potential. The scalar soft masses and trilinear terms
are then evaluated by eqs. (22) and the gaugino masses by eqs. (30). Note that the
relation (23) is valid for all γ. We therefore do not list the parameter B0.

Table 1: The soft terms (in terms of m3/2) for various values of γ. If a solution to the
RGE exists, the value of tan β is shown in the last columns for µ > 0 and µ < 0.
γ t ρ m0 A0 M1 M2 M3 tan β tan β

(µ > 0) (µ < 0)
0.6 0.446 0.175 0.475 1.791 0.017 0.026 0.027
1 0.409 0.134 0.719 1.719 0.015 0.025 0.026
1.1 0.386 0.120 0.772 1.701 0.015 0.024 0.026 46 29
1.4 0.390 0.068 0.905 1.646 0.014 0.023 0.026 40 23
1.7 0.414 0.002 0.998 1.588 0.013 0.022 0.025 36 19

In most phenomenological studies, B0 is substituted for tan β, the ratio be-
tween the two Higgs VEVs, as an input parameter for the renormalization group
equations (RGE) that determine the low energy spectrum of the theory. Since B0
is not a free parameter in our theory, but is fixed by eq. (23), this corresponds to
a definite value of tan β. For more details see [23] (and references therein). The
corresponding tan β for a few particular choices for γ are listed in the last two
columns of table 1 for µ > 0 and µ < 0 respectively. No solutions were found for
γ . 1.1, for both signs of µ. The lighest supersymmetric particle (LSP) is given
by the lightest neutralino and since M1 < M2 (see table 1) the lightest neutralino
is mostly Bino-like, in contrast with a typical mAMSB (minimal anomaly medi-
ation supersymmetry breaking) scenario, where the lightest neutralino is mostly
Wino-like [24].

To get a lower bound on the stop mass, the sparticle spectrum is plotted in
Figure 2 as a function of the gravitino mass for γ = 1.1 and µ > 0 (for µ < 0
the bound is higher). The experimental limit on the gluino mass forces m3/2 & 15
TeV. In this limit the stop mass can be as low as 2 TeV. To conclude, the lower end
mass spectrum consists of (very) light charginos (with a lightest chargino between
250 and 800 GeV) and neutralinos, with a mostly Bino-like neutralino as LSP
(80−230 GeV), which would distinguish this model from the mAMSB where the
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Figure 2: The masses of the sbottom (yellow), stop (black), gluino (red), lightest
chargino (green) and lightest neutralino (blue) as a function of m3/2 for γ = 1.1
and for µ > 0. No solutions to the RGE were found when m3/2 & 45 TeV. The
lower bound corresponds to a gluino mass of 1 TeV.

LSP is mostly Wino-like. These upper limits on the LSP and the lightest chargino
imply that this model could in principle be excluded in the next LHC run. In order
for the gluino to escape experimental bounds, the lower limit on the gravitino mass
is about 15 TeV. The gluino mass is then between 1-3 TeV. This however forces
the squark masses to be very high (10 − 35 TeV), with the exception of the stop
mass which can be relatively light (2 − 15 TeV).

6. Non-canonical Kähler potential for the visible sector
As mentioned already in Section 4, an alternative way to avoid tachyonic soft
scalar masses for the MSSM fields in the model (17), instead of adding the extra
Palonyi-type field z in the hidden sector, is by introducing non-canonical kinetic
terms for the MSSM fields, such as:

K = −κ−2 log(s + s̄) + κ−2b(s + s̄) + (s + s̄)−ν
∑

ϕϕ̄,

W = κ−3a + WMS S M,

f (s) = 1, fA(s) = 1/g2
A , (31)

where ν is an additional parameter of the theory, with ν = 1 corresponding to
the leading term in the Taylor expansion of − log(s + s̄ − ϕϕ̄). Since the visible
sector fields appear only in the combination ϕϕ̄, their VEVs vanish provided that
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the scalar soft masses squared are positive. Moreover, for vanishing visible sector
VEVs, the scalar potential and is minimization remains the same as in eqs. (ref-
bsalpha). Therefore, the non-canonical Kähler potential does not change the fact
that the F-term contribution to the soft scalar masses squared is negative. On
the other hand, the visible fields enter in the D-term scalar potential through the
derivative of the Kähler potential with respect to s. Even though this has no ef-
fect on the ground state of the potential, the ϕ-dependence of the D-term scalar
potential does result in an extra contribution to the scalar masses squared which
become positive

ν > −
eα(σs + 1)α
A(α)(1 − α)

≈ 2.6 . (32)

The soft MSSM scalar masses and trilinear couplings in this model are:

m2
0 = κ2a2

(
b
α

) (
eα(σs + 1) + ν

A(α)
α

(1 − α)
)

A0 = m3/2(s + s̄)ν/2 (σs + 3) (33)

B0 = m3/2(s + s̄)ν/2 (σs + 2)

where σs is defined as in (22), eq. (20) has been used to relate the constants a and
c, and corrections due to a small cosmological constant have been neglected. A
field redefinition due to a non-canonical kinetic term gϕϕ̄ = (s + s̄)−ν is also taken
into account. The main phenomenological properties of this model are not ex-
pected to be different from the one we analyzed in section 5. with the parameter ν
replacing γ. Gaugino masses are still generated at one-loop level while mSUGRA
applies to the soft scalar sector. We therefore do not repeat the phenomenological
analysis for this model.

7. Identifying the dilaton with the inflaton
In the following, we study the possibility to identify the dilaton with the inflaton.
We will show first that the above model does not allow slow roll inflation.

Indeed, the kinetic terms in the model (9-10) for the scalar φ ≡ s + s̄ = 1/l are
given by

Ls/e = −gss̄∂µs∂µ s̄ = −
pκ−2

4
1
φ2 ∂µφ∂

µφ. (34)

The canonically normalised field χ therefore satisfies χ = κ−1
√

p
2 log φ, where we

re-introduce the gravitational coupling κ.
The slow roll parameters are given by

ε =
1

2κ2

(
dV/dχ

V

)2

=
1

2κ2

 1
V

dV
dφ

(
dχ
dφ

)−12

,

η =
1
κ2

V ′′(χ)
V

=
1
κ2

1
V

d2V
dφ2

(
dχ
dφ

)−2

−
dV
dφ

d2χ

dφ2

(
dχ
dφ

)−3 , (35)
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It can be shown that, when the conditions (11) and (12) are satisfied, the slow roll
parameters and the potential depend only on ρ = −bφ; indeed

κ4V(ρ)
b3c2 =

e−ρ
(
A2(α)ρ

(
ρ2 + 4ρ − 2

)
− 2eρ(ρ + 2)2

)
2ρ3 , (36)

where A2(α) ≈ −50.66 as in eq. (12). In Fig. 3, a plot is shown of κ4V(ρ)
|b|3c2 as a

function of ρ. The minimum of the potential is at ρmin ≈ 0.1832 (see eq. (11)),
while the potential has a local maximum at ρmax ≈ 0.4551. A plot of the slow roll
parameter η (also in Fig. 3) shows that |η| � 1 is not satisfied. This result holds
for any parameters a, b, c satisfying eqs. (11) and (12). A similar analysis to the

Figure 3: A plot of − κ
4V(ρ)
b3c2 as a function of ρ = −bφ (left), and a plot of the slow

roll parameter η as a function of ρ (right). The slow roll condition |η| � 1 is not
satisfied for any value of the parameters a, b, c.

one above can be performed for p = 1, showing that the slow roll condition η � 1
can not be satisfied.

8. Extensions of the model that satisfy the slow roll conditions
In the previous section we showed that the slow roll conditions can not be satisfied
in the minimal versions of the model. In this section we modify the above model
by modifying the Kähler potential. While the superpotential is uniquely fixed
(up to a Kähler transformation), the Kähler potential admits corrections that can
always be put in the form

K = −pκ−2 log
(
s + s̄ +

ξ

b
F(s + s̄)

)
+ κ−2b(s + s̄), (37)

while the superpotential, the gauge kinetic function and moment map are given
by

W = κ−3a,
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f (s) = δ + βs,

P = κ−2c

b − p
1 +

ξ
b Fs

s + s̄ +
ξ
b F

 , (38)

where P is the U(1) moment map (7) and Fs = ∂sF(s + s̄). The scalar potential is
given by (φ = s + s̄)

V = VF + VD,

VF = κ−4 |a|2ebφ

(φ +
ξ
b F)p

−3 −
1
p

(
b (bφ + ξF) − p(b + ξFφ)

)2

ξFφφ(bφ + ξF) − (b + ξFφ)2

 ,
VD = κ−4 b2c2

2δ + βφ

1 − p
1 +

ξ
b Fφ

bφ + ξF

2

. (39)

As was discussed above, we take δ = 1, β = 0 for p = 1 and δ = 0, β = 1 for
p = 2.

Identifying Re(s) with the inverse string coupling, the function F may con-
tain perturbative contributions that can be expressed as power series of 1/(s + s̄),
as well as non-perturbative corrections which are exponentially suppressed in the
weak coupling limit. The later can be either of the form e−λ(s+s̄) for λ > 0 in the
case of D-brane instantons, or of the form e−λ(s+s̄)2

in the case of (Neveu-Schwarz)
NS5-brane instantons (since the closed string coupling is the square of the open
string coupling). We have considered a generic contribution of these three differ-
ent types of corrections and we found that only the last type of contributions can
lead to an inflationary plateau providing sufficient inflation. The other corrections
can be present but do not modify the main properties of the model (as long as
weak coupling description holds). In the following section, we analyse in detailed
a function F describing a generic NS5-brane instanton correction to the Kähler
potential.

9. Slow-roll Inflation
9.1. p=2 case
We now consider the case with

F(φ) = exp(αb2φ2), (40)

where b < 0 and α < 0 . F(φ) vanishes asymptotically at large φ. In this case, we
obtain

VD =
κ−4b3c2

bφ

bφ − 2 + ξeαb2φ2
(1 − 4αbφ)

bφ + ξeαb2φ2

2

, (41)
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and

VF = −
κ−4|a|2b2ebφ

2
(
ξeαb2φ2

+ bφ
)2


(
bφ + ξeαb2φ2

(1 − 4αbφ) − 2
)2

2αξeαb2φ2
(
2αb3φ3 + ξeαb2φ2

− bφ
)
− 1

+ 6

 . (42)

There are four parameters in this model namely α, ξ, b and c. The first two
parameters α and ξ control the shape of the potential. There are some regions in
the parameter space of α and ξ that the potential satisfies the slow-roll conditions
i.e. ε � 1 and |η| � 1. In order to obtain the potential with flat plateau shape
which is suitable for inflation and in agreement with Planck ’15 data, we choose

α ' −4.84 and ξ ' 0.025 (43)

Note that in the case of ξ = 0 and b < 0, we can find the Minkowski minimum by
solving the equations V(φmin) = 0 and dV(φmin)/dφ = 0, where φmin = smin + s̄min
is the value of φ at the minimum of the potential. In the case of ξ , 0, we can not
solve the equations analytically and the relations (11), (12) are not valid. We can
always assume that they are modified into

bφmin = −ρ(ξ, α) and
a2

bc2 = −50.66 × λ(ξ, α,Λ)2, (44)

where λ takes positive values and satisfies |λ − 1| � 1. For any given value of
parameters ξ, α and the cosmological constant Λ, one can numerically fix the
value of ρ and λ. By fine-tuning the cosmological constant Λ to be very close to
zero, we can numerically solve the equations V = 0 and dV/dφ = 0 for the value
of ρ and λ in (44) as:

ρ ≈ 0.18, (45)
λ ≈ 1.017 (46)

From eq. (44), we can see that the third parameter, b, controls the vacuum ex-
pectation value φmin. This can be shown in Fig. 4 where we compare the scalar
potential for different values of b. Motivated by string theory, we have the identi-
fication φ ∼ 1/gs . We can choose the value of the parameter b such that φmin is
of the order of 10 to make sure that we are in the perturbative regime in gs. The
last parameter, c, controls the overall scale of the potential but does not change
its minimum and its shape. In the following, we will fix b and c by using the
cosmological data.

In order to compare the predictions of our models with Planck ’15 data, we
choose the following boundary conditions:

φint = 27.32 φend = 22.68 (47)

The initial conditions are chosen very near the maximum on the (left) side, so
that the field rolls down towards the electroweak minimum. Any initial condition
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Figure 4: A plot of the scalar potential for p = 2, with b = −0.020, b = −0.015
and b = −0.012. Note that we choose the parameters α and ξ as in eq. (43) with
c = 0.06.

on the right of the maximum may produce also inflation, but the field will roll
towards the SUSY vacuum at infinity. The results are therefore very sensitive to
the initial conditions (47) of the inflaton field.

The slow roll parameters are given as in equation (35). The total number of
e-folds N can be determined by

N = κ2
∫ χint

χend

V
∂χV

dχ = κ2
∫ φint

φend

V
∂φV

(
dχ
dφ

)2

dφ. (48)

Note that we choose |η(χend)| = 1. We can compare the theoretical predictions of
our model to the experimental results via the power spectrum of scalar perturba-
tions of the CMB, namely the amplitude As and tilt ns, and the relative strength of
tensor perturbations, i.e. the tensor-to-scalar ratio r. In terms of slow roll param-
eters, these are given by

As =
κ4V∗

24π2ε∗
, (49)

ns = 1 + 2η∗ − 6ε∗, (50)
r = 16ε∗, (51)

where all parameters are evaluated at the field value χint.
In order to satisfy Planck ’15 data, we choose the parameters b = −0.0182,

c = 0.61 × 10−13. The value of the slow-roll parameters at the beginning of
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inflation are

ε(φint) ' 1.86 × 10−24 and η(φint) ' −1.74 × 10−2. (52)

The total number of e-folds N, the scalar power spectrum amplitude As, the spec-
tral index of curvature perturbation ns and the tensor-to-scalar ratio r are calcu-
lated and summarised in Table 2, in agreement with Planck ’15 data [25]. Fig. 5
shows that our predictions for ns and r are within 1σ C.L. of Planck ’15 con-
tours with the total number of e-folds N ≈ 1075. Note that N is the total number
of e-folds from φint to φend. However the number of e-folds associated with the
CMB observation corresponds to a period between the time of horizon crossing
and the end of inflation, which is much smaller than 1075. According to general
formula in [25], the number of e-folds between the horizon crossing and the end
of inflation is roughly estimated to be around 50-60.

Table 2: The theoretical predictions for p = 2, with b = −0.0182, c = 0.61 × 10−13, and
α, ξ given in eq. (43).

ns r As

0.965 2.969 × 10−23 2.259 × 10−9

We would like to remark that the parameter c also controls the gravitino mass
at the minimum of the potential around O(10) TeV. Indeed, the gravitino mass is
written as

m3/2 = κ2eκ
2K/2W =

1
κ

(
abebφ/2

bφ + ξF(φ)

)
. (53)

For b = −0.0182, we get φmin ≈ 9.91134 and the gravitino mass at the minimum
of the potential 〈

m3/2
〉
≈ 14.98 TeV. (54)

The Hubble parameter during inflation (evaluated at φ∗ = φint) is

H∗ = κ
√

V∗/3 = 1.38 TeV. (55)

This shows that our predicted scale for inflation is of the order of TeV. The mass
of gravitino during the inflation m∗3/2 = 4.15 TeV is higher than the inflation scale,
and the gauge boson mass is M∗Aµ = 3.12 TeV.7 In fact, the gauge boson acquires
a mass due to a Stueckelberg mechanism by eating the imaginary component of
s, where its mass at the minimum of the potential is given by

〈MAµ〉 = 15.48TeV. (56)

As a result, the model essentially contains only one scalar field Re(s), which is the
inflaton. This is in contrast with other supersymmetric models of inflation, which
usually contain at least two real scalars [26].8

7The gauge boson mass is given by mAµ =
√

2gss̄c2/Re(s).
8This is because a chiral multiplet contains a complex scalar.



20 I. Antoniadis

Figure 5: We plot the theoretical predictions for the case p = 2, shown in Table 2,
in the ns - r plane together with the Planck ’15 results for TT, TE, EE, + lowP and
assuming ΛCDM + r.

9.2. p=1 case
In this case, we obtain

VD =
κ−4b2c2

2

bφ − 1 + ξeαb2φ2
(1 − 2αbφ)

bφ + ξeαb2φ2

2

, (57)

and

VF = −
κ−4|a|2bebφ

ξeαb2φ2
+ bφ


(
bφ + ξeαb2φ2

(1 − 2αbφ) − 1
)2

2αξeαb2φ2
(
2αb3φ3 + ξeαb2φ2

− bφ
)
− 1

+ 3

 . (58)

The potential has similar properties with the p = 2 case although it may give
different phenomenological results at low energy. Similar to the previous case,
the relations (20) are not valid when ξ , 0 and we assume that they are modified
into

bφmin = −ρ(ξ, α) and
bc2

a2 ' −0.359 × λ(ξ, α,Λ)−2. (59)

By choosing α = −0.781 and ξ = 0.3023 and tuning the cosmological constant Λ
to be very close to zero, we can numerically fix ρ ≈ 0.56 and λ ≈ 1.29 for this
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Table 3: The theoretical predictions for p = 1 with b = −0.0234, c = 1 × 10−13, α =
−0.781 and ξ = 0.3023.

ns r As

0.959 4.143 × 10−22 2.205 × 10−9

case. The gravitino mass for p = 1 case can be written as

m3/2 = κ2eκ
2K/2W =

1
κ

 a
√

bebφ/2√
bφ + ξF(φ)

 . (60)

By choosing the parameters b = −0.0234, c = 1× 10−13, the gravitino mass at the
minimum of the potential is

〈m3/2〉 = 18.36 TeV. (61)

with φmin ≈ 21.53, and
〈MAµ〉 = 36.18 TeV. (62)

By choosing appropriate boundary conditions, we find

φint = 64.53 and φend = 50.99 (63)

As summarised in Table 3, the predictions for the p = 1 case are similar to those
of p = 2, in agreement with Planck ’15 data with the total number of e-folds
N ≈ 888. In this case, the Hubble parameter during inflation is

H∗ = κ
√

V∗/3 = 5.09 TeV. (64)

Note that for the p = 1 case, the mass of the gauge boson is M∗Aµ = 6.78 TeV,
and the mass of the gravitino during inflation is m∗3/2 = 4.72 TeV.

9.3. SUGRA spectrum
The above model can be coupled to MSSM, as described in section 4.:

K = K(s + s̄) +
∑

ϕϕ̄,

W = Wh(s) + WMSSM . (65)

The soft supersymmetry breaking terms can then be calculated as follows

m2
0 = eκ

2K
(
−2κ4Wh(s)W̄h(s) + κ2gss̄ |∇sWh|

2
)
,

A0 = κ2eκ
2K/2gss̄Ks

(
W̄s̄ + κ2KsW̄

)
,

B0 = κ2eκ
2K/2

(
gss̄Ks

(
W̄s̄ + κ2KsW̄

)
− W̄

)
. (66)
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For p = 2 the Lagrangian contains a Green-Schwarz term eq. (18), and the
theory is not gauge invariant (without the inclusion of extra fields that are charged
under the U(1)). We therefore focus on p = 1. The soft terms can be written in
terms of the gravitino mass (see eq. (53))

m2
0 = m2

3/2 [−2 + C] ,
A0 = m3/2 C,

B0 = A0 − m3/2, (67)

where

C = −

(
−ξeαb2φ2

+ bφ
(
4αξeαb2φ2

− 1
)

+ 2
)2

4αξ2e2αb2φ2
− 4αbξφeαb2φ2

+ 8α2b3ξφ3eαb2φ2
− 2

∣∣∣∣∣∣∣∣∣
φ=φmin

. (68)

Using the parameters presented in section 9.2., we find m3/2 = 18.36 TeV and
C = 1.53. For ξ = 0 the model reduces to the one analysed in section 4., where
one has C = 1.52 and m3/2 = 17.27 TeV (with φmin = 9.96). Moreover, the
scalar soft mass is tachyonic. This can be solved either by introducing an extra
Polonyi-like field, or by allowing a non-canonical Kähler potential for the MSSM-
like fields ϕ. The resulting low energy spectrum is expected to be similar to the
one described in sections 4. and 5.. We do not perform this analysis, but only
summarise the results.

Since the tree-level contribution to the gaugino masses vanishes, their mass is
generated at one-loop by the so-called ‘Anomaly Mediation’ contribution (26). As
a result, the spectrum consists of very light neutralinos (O(102) GeV), of which the
lightest (a mostly Bino-like neutralino) is the LSP dark matter candidate, slightly
heavier charginos and a gluino in the 1−3 TeV range. The squarks are of the order
of the gravitino mass (∼ 10 TeV), with the exception of the stop squark which can
be as light as 2 TeV.

10. Symmetric versus non-symmetric point
Here, we generalise the above model of inflation and we are interested in super-
gravity theories containing a single chiral multiplet transforming under a gauged
R-symmetry with a corresponding abelian vector multiplet [16]. We assume that
the chiral multiplet X (with scalar component X) transforms as:

X −→ Xe−iqω. (69)

where q is its charge, and ω is the gauge parameter.
The Kähler potential is therefore a function of XX̄, while the superpotential is

constrained to be of the form Xb:

K = K(XX̄),
W = κ−3 f Xb, (70)
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where X is a dimensionless field and κ−1 = mp = 2.4 × 1015 TeV is the (re-
duced) Planck mass. For b , 0, the gauge symmetry eq. 69 becomes a gauged
R-symmetry. The gauge kinetic function can have a constant contribution as well
as a contribution proportional to ln X

f (X) = γ + β ln X. (71)

The latter contribution proportional to β is not gauge invariant and can be used
as a Green-Schwarz counter term to cancel possible anomalies. One can show
however that the constant β is fixed to be very small by anomaly cancellation
conditions and does not change our results [16]. We will therefore omit this term
in our analysis below.

We are interested in the general properties of supergravity theories of inflation
that are of the above form. Before performing our analysis, a distinction should
be made concerning the initial point where slow-roll inflation starts. The inflaton
field (which will turn out to be ρ, where X = ρeiθ) can either have its initial value
close to the symmetric point where X = 0, or at a generic point X , 0. The
minimum of the potential, however, is always at a nonzero point X , 0. This is
because at X = 0 the negative contribution to the scalar potential vanishes and no
cancellation between F-term and D-term is possible. The supersymmetry breaking
scale is therefore related to the cosmological constant as κ−2m2

3/2 ≈ Λ. One could
in principle assume that the value of the potential at its minimum is of the order
of the supersymmetry breaking scale. However, in this case additional corrections
are needed to bring down the minimum of the potential to the present value of the
cosmological constant, and we therefore do not discuss this possibility.

In the first case, inflation starts near X = 0, and the inflaton field will roll
towards a minimum of the potential at X , 0. On the other hand, in the second
case inflation will start at a generic point X , 0. In order to make easier contact
with the model discussed in the previous sections, it is convenient to work with
another chiral superfield S , which is invariant under a shift symmetry

S −→ S − icα (72)

by performing a field redefinition

X = eS . (73)

In this case the most general Kähler potential and superpotential are of the form

K = K(S + S̄ ),
W = κ−3aebS . (74)

Note that this field redefinition is not valid at the symmetric point X = 0 for the
first case.
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11. Case 1: Inflation near the symmetric point
11.1. Slow roll parameters
In this section we derive the conditions that lead to slow-roll inflation scenarios,
where the start of inflation is near a local maximum of the potential at X = 0.
Since the superpotential has charge 2 under R-symmetry, one has 〈W〉 = 0 as long
as R-symmetry is preserved. Therefore, 〈W〉 can be regarded as the order param-
eter of R-symmetry breaking. On the other hand, the minimum of the potential
requires 〈W〉 , 0 and broken R-symmetry. It is therefore attractive to assume
that at earlier times R-symmetry was a good symmetry, switching off dangerous
corrections to the potential. As similar approach was followed in [27], where
a discrete R-symmetry is assumed. Instead, we assume a gauged R-symmetry
which is spontaneously broken at the minimum of the potential.

While the superpotential is uniquely fixed in eq. (70), the Kähler potential is
only fixed to be of the form K(XX̄). We expand the Kähler potential as follows

K(X, X̄) = κ−2XX̄ + κ−2A(XX̄)2,

W(X) = κ−3 f Xb,

f (X) = 1, (75)

where A and f are constants. The gauge kinetic function is taken to be constant
since it was shown that the coefficient β in front of the logarithmic term in eq. (71)
is fixed to be very small by anomaly cancellation conditions [16]. As far as the
scalar potential is concerned, the coefficient γ can be absorbed in other parameters
of the theory. We therefore take γ = 1.

The scalar potential is given by

V = VF +VD, (76)

where

VF = κ−4 f 2(XX̄)b−1eXX̄(1+AXX̄)

−3XX̄ +

(
b + XX̄(1 + 2AXX̄)

)2

1 + 4AXX̄

 , (77)

and

VD = κ−4 q2

2

[
b + XX̄(1 + 2AXX̄)

]2
. (78)

The superpotential is not gauge invariant under the U(1) gauge symmetry.
Instead it transforms as

W → We−iqbw . (79)

Therefore, the U(1) is a gauged R-symmetry which we will further denote as
U(1)R. From WXkX

R = −rRκ
2W, where kX

R = −iqX is the Killing vector for the field
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X under the R-symmetry, rR = iκ−2ξR with κ−2ξR the Fayet-Iliopoulos contribution
to the scalar potential, and WX is short-hand for ∂W/∂X, we find

rR = iκ−2qb. (80)

A consequence of the gauged R-symmetry is that the superpotential coupling b en-
ters the D-term contribution of the scalar potential as a constant Fayet-Iliopoulos
contribution.9

Note that the scalar potential is only a function of the modulus of X and that
the potential contains a Fayet-Iliopoulos contribution for b , 0. Moreover, its
phase will be ‘eaten’ by the U(1) gauge boson upon a field redefinition of the
gauge potential similarly to the standard Higgs mechanism. After performing a
change of field variables

X = ρeiθ, X̄ = ρe−iθ, (ρ ≥ 0) (81)

the scalar potential is a function of ρ,

κ4V = f 2ρ2(b−1)eρ
2+Aρ4

−3ρ2 +

(
b + ρ2 + 2Aρ4

)2

1 + 4Aρ2

 +
q2

2

(
b + ρ2 + 2Aρ4

)2
. (82)

Since we assume that inflation starts near ρ = 0, we require that the potential
eq. (82) has a local maximum at this point. It turns out that the potential only
allows for a local maximum at ρ = 0 when b = 1. For b < 1 the potential diverges
when ρ goes to zero. For 1 < b < 1.5 the first derivative of the potential diverges,
while for b = 1.5, one has V ′(0) = 9

4 f 2 + 3
2 q2 > 0, and for b > 1.5, on has

V ′′(0) > 0. We thus take b = 1 and the scalar potential reduces to

κ4V = f 2eρ
2+Aρ4

−3ρ2 +

(
1 + ρ2 + 2Aρ4

)2

1 + 4Aρ2

 +
q2

2

(
1 + ρ2 + 2Aρ4

)2
. (83)

Note that in this case the the superpotential is linear W = f X, describing the
sgoldstino (up to an additional low-energy constraint) [30]. Indeed, modulo a D-
term contribution, the inflaton in this model is the superpartner of the goldstino.
In fact, for q = 0 the inflaton reduces to the partner of the goldstino as in Minimal
Inflation models [31]. The important difference however is that this is a micro-
scopic realisation of the identification of the inflaton with the sgoldstino, and that
the so-called η-problem is avoided (see discussion below).

The kinetic terms for the scalars can be written as10

Lkin = −gXX̄ ∂̂µX∂̂µX = −gXX̄

[
∂µρ∂

µρ + ρ2
(
∂µθ + qAµ

) (
∂µθ + qAµ

)]
. (84)

9For other studies of inflation involving Fayet-Iliopoulos terms see for example [28], or [29]
for more recent work. Moreover, our motivations have some overlap with [27], where inflation is
also assumed to start near an R-symmetric point at X = 0. However, this work uses a discrete
R-symmetry which does not lead to Fayet-Iliopoulos terms.

10The covariant derivative is defined as ∂̂µX = ∂µX−AµkX
R , where kX

R = −iqX is the Killing vector
for the U(1) transformation eq. 69.
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It was already anticipated above that the phase θ plays the role of the longitudinal
component of the gauge field Aµ, which acquires a mass by a Brout-Englert-Higgs
mechanism.

We now interpret the field ρ as the inflaton. It is important to emphasise that,
in contrast with usual supersymmetric theories of inflation where one necessarily
has two scalar degrees of freedom resulting in multifield inflation [26], our class
of models contains only one scalar field ρ as the inflaton. In order to calculate the
slow-roll parameters, one needs to work with the canonically normalised field χ
satisfying

dχ
dρ

=
√

2gXX̄ . (85)

The slow-roll parameters are given in terms of the canonical field χ by

ε =
1

2κ2

(
dV/dχ

V

)2

, η =
1
κ2

d2V/dχ2

V
. (86)

Since we assume inflation to start near ρ = 0, we expand

ε = 4
(
−4A+x2

2+x2

)2
ρ2 + O(ρ4),

η = 2
(
−4A+x2

2+x2

)
+ O(ρ2), (87)

where we defined q = f x. Notice that for ρ � 1 the ε parameter is very small,
while the η parameter can be made small by carefully tuning the parameter A. Any
higher order corrections to the Kähler potential do not contribute to the leading
contributions in the expansion near ρ = 0 for η and ε. Such corrections can
therefore be used to alter the potential near its minimum, at some point X , 0
without influencing the slow-roll parameters.

A comment on the η-problem in Supergravity
A few words are now in order concerning the η-problem [32]. The η problem
in N = 1 supergravity is often stated as follows (see for example [33]): If, for
instance, a theory with a single chiral multiplet with scalar component ϕ is taken,
then the Kähler potential can be expanded around a reference location ϕ = 0 as
K = K(0) +Kϕϕ̄(0)ϕϕ̄ + . . . . The Lagrangian becomes

L = −∂µφ∂
µφ̄ −V(0)

(
1 + κ2φφ̄ + · · ·

)
, (88)

where φ is the canonically normalised field φφ̄ = Kϕϕ̄(0)ϕϕ̄, and the ellipses stand
for extra terms in the expansion coming fromK and W. Following this argument,
the mass mφ turns out to be proportional to the Hubble scale

m2
φ = κ2V(0) + . . . = 3H2 + . . . , (89)
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and therefore

η =
m2
φ

3H2 = 1 + . . . . (90)

Or otherwise stated, this leading contribution of order 1 to the η-parameter has its
origin from the fact that the F-term contribution to the scalar potential contains an
exponential factor eK : V = eXX̄+... [. . .] resulting in its second derivative VXX̄ =
V[1 + . . .].

However, in our model the factor ’1’ drops out for the particular choice b = 1
in the superpotential11, resulting in an inflaton mass m2

ρ which is determined by
the next term A(XX̄)2 in the expansion of the Kähler potential,

m2
χ =

(
−4A + x2

)
κ−2 f 2 + O(ρ2),

H2 =
κ−2 f 2

6 (2 + x2) + O(ρ2). (91)

As a result, there are two ways to evade the η-problem:

• First, one can obtain a small η by having a small q � f , while A should
be of order O(10−1). In this case, the rôle of the gauge symmetry is merely
to constrain the form of the Kähler potential and the superpotential, and to
provide a Higgs mechanism that eliminates the extra scalar (phase) degree
of freedom.

• Alternatively there could be a cancellation between q2 and 4A f 2.

Since A is the second term in the expansion of the Kähler potential eq. (75), it is
natural to be of order O(10−1) and therefore providing a solution to the η-problem.

Note that the mass of the inflaton given in eqs. (91) is only valid during infla-
tion at small ρ. The mass of the inflaton at its VEV will be affected by additional
corrections that are needed to obtain in particular a vanishing value for the scalar
potential at its minimum [16].

The upper bound on the tensor-to-scalar ratio
Before moving on to the next section, let us focus on the approximation at ρ � 1
where the perturbative expansion of the slow-roll parameters in eqs. (87) is valid,
and assume that the horizon exit occurs at the field value ρ∗ very close to the
maximum ρ = 0. In this approximation, eqs. (87) become

ε(ρ) ≈ εpert(ρ) = |η∗|
2ρ2, η(ρ) ≈ η∗, (92)

where the asterisk refers to the value of parameters evaluated at the horizon exit.

11Note that in hybrid inflation models the η-problem is also evaded by a somewhat similar way,
but these models generally include several scalar fields (and superfields) besides the inflaton (see
e.g. [34]).
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To discuss the upper bound on the tensor-to-scalar ratio, it is convenient to
divide the region [ρ = 0, ρend] into two regions: one is [0, ρp], where the ap-
proximation 92 is valid, and the other is the rest [ρp, ρend]. Here ρend means the
inflation end. Note that ρp < ρend because the approximation 92 breaks down
before the end of inflation where ε(ρend) = 1 or |η(ρend)| = 1. In terms of this
division, the number of e-folds from the horizon exit to the end of inflation can be
approximated by

NCMB ' Npert(ρ∗, ρp) + κ

∫ χend

χp

dχ√
2ε(χ)

, (93)

where we introduced

Npert(ρ1, ρ2) = κ

∫ χ2

χ1

dχ√
2εpert(χ)

=
1
|η∗|

ln
(
ρ2

ρ1

)
. (94)

Here χ is the canonically normalised field defined by eq. (85). Let us next focus
on the region [ρp, ρend]. It is natural to expect the following inequality

κ

∫ χend

χp

dχ√
2ε(χ)

. κ

∫ χend

χp

dχ√
2εpert(χ)

. (95)

This is based on the following observation. The right hand side describes a hypo-
thetical situation, as if the slow-roll condition were valid throughout the inflation
until its end. But since in the actual inflation the slow-roll condition breaks down
in the region [ρp, ρend], the actual number of e-folds in this region will be smaller
than that in the hypothetical situation. Adding Npert(ρ∗, ρp) to the both hand sides
of 95 and using 93, we find

NCMB .
1
|η∗|

ln
(
ρend

ρ∗

)
. (96)

Using 92 and the definition of the tensor-to-scalar ratio r = 16ε∗, we obtain the
upper bound:

r . 16
(
|η∗|ρende−|η∗ |NCMB

)2
. (97)

To satisfy CMB data, let us choose η = −0.02 and NCMB ≈ 50. Assuming ρend .
1/2, we obtain the upper bound r . 10−4. Note that this is a little bit lower than
the Lyth bound [35] for small field inflation, r . 10−3. From the upper bound
on r, we can also find the upper bound on the Hubble parameter as follows. In
general, the power spectrum amplitude As is related to the Hubble parameter at
horizon exit H∗ by

As =
2κ2H2

∗

π2r
. (98)
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Combining this with the upper bound r . 10−4 and the value As = 2.2 × 10−9 by
CMB data, we find the upper bound on the Hubble parameter H∗ . 109 TeV.

In Ref. [16], we will also find the lower bound r & 10−9 (equivalently H∗ &
107 TeV), based on an model-independent argument. This bound can be lowered
at the cost of naturalness between parameters in the potential.
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