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ABSTRACT

We consider the string theory of a closed and an open string and search for the
transformations of the space-time fields which do not change the physical content
of the theory, i.e. the symmetry transformations. In the open string theory we
start with a modified action which has an additional surface term which enables
the invariance of the complete action to the general coordinate transformations
and the gauge transformations. The string theory is conformally invariant world
sheet field theory. Therefore, the physics is preserved if the conformal field theories
corresponding to the initial and the transformed field configurations are isomor-
phic. We show that the general coordinate transformations are T-dual to the
gauge transformations.

1. Bosonic string actions

The dynamics of the bosonic string, moving in a curved background as-
sociated with the massless bosonic fields [1], a metric field G, = Gy, a
Kalb-Ramond field B,, = —B,, and a dilaton field ® is described by the
string sigma model action. The background fields in which the string moves
have to satisfy the space-time equations of motion

1
Ry = 5 Bupo B, +2D,0,® = 0,
D,B",, —20,8B",, =0,
1
4(0®)? — 4D, 0"® + EBWBWP +4mk(D —26)/3 - R =0, (1)

in order for the conformal invariance of the quantum theory to be preserved.
Here B, = 0,B,, + 0,B,, + 0,B,,, is the field strength of the field B,,,,
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R, is a Ricci tensor, and D, is a covariant derivative with respect to
the space-time metric. We broadly investigated the string sigma model for
the solution of the space-time equations of motion called a weakly curved
background [2] (of the first and second order which differ by the term in
brackets), given by

G (@) = g + {302, (2) },

1
B,uu(x) =buw + h/.Ll/(x)a h;w(x) = gB;wpfcp- (2)
For the open bosonic string we searched for the solution of the boundary
conditions, for which we obtained the effective theory describing a closed
effective string and investigated the commutativity of the effective string
coordinates. We obtained that noncommutativity exists along the entire
string when the Kalb-Ramond field is coordinate dependent.

For the closed string moving in a weakly curved background we devel-
oped the T-dualization procedure, based on the standard procedure, giving
a prescription how to find theories T-dual to a given theory. The gener-
alization of our procedure was made for the weakly curved background of
the second order, which does not posses the global shift symmetry. Our
procedure enabled T-dualization of an arbitrary space-time coordinate. For
the first order weakly curved background we performed the T-dualization
of the arbitrary set of the initial coordinates [3]. If we choose d coordinates
and mark the T-dualizations performed along them, along the rest of the
coordinates and along all coordinates by

T =od_THn  Ti= ogdeT“", T =ol_ 1w, (3)
and analogously mark the T-dualizations in the dual space
7:7/ = nglTlﬁn’ 7; = OEZdJrlTH/n’ 7: = OEZITHWL’ (4)

then we obtain a set of string sigma models connected by the diagram

In a left vertex is the initial action, the bosonic string action in a con-
formal gauge gog = e2F Nag>

S[-%'] = K// d2§ 8_,_1-“1_[4_,“,(33)8_.%'”, a:i: = &r + 807 (5)
b))
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with the background field composition

My () = By () & 3 Gy ().

The totally T-dualized theory [4], in the right vertex of the T-duality
diagram is

* ,{2 v
Syl = [ @ 05,0 [AVO )]0, (6)
with the background

O [AV] = —2(GFTLGT = AV £ (GFIIAV], (1)

which is the inverse of the initial background field composition

1

OL Ty = %55, (8)
and its argument is equal to
AVOR(y) = —rb" Ayl + (g~ Mg, (9)

where the tilde coordinates represent the flat space-time T-duals of the
corresponding T-dual coordinates.

The central action is a partially T-dualized action, obtained applying
the T-dualization procedure to coordinates z%, given by

Sla' o) =k [ 426|040 Ty, AV (o', o) )00
k02 a2, AV (2, )% (a7, AV (2, o))y

104y O™ (@, AV (&, y) T, AV®(a?, )02

H ~ . .
+3 04YaO? (2!, AV (2", ya))O_yp | - (10)

The new background field compositions are defined in terms of the initial
field composition restricted to corresponding subspaces and their inverses
and the inverses of the totally T-dualized field compositions restricted to
corresponding subspaces

~ ~ 1
@ibnibc = H$cb@ba = ﬂ(s(cla (11)

and

L sk, (12)

... 0F — oM, .. —
405 = O5 1Ly = 9 i
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The argument of the background fields is defined by

AV O (gl y,) = —“[égiHO—m + égllﬂmbi}ﬁx(o)i
—K {égiﬂofbi - égliHOeri} Az
Klaab | Qab 0) _Klxab _ dab]ax
—5 (08 + 637 Ay — S[eg! —ert [ag”,
where the tilde coordinates represent the flat space-time T-duals of the
appropriate initial or T-dual coordinate. Despite the fact the T-dualization
procedure was applied to x¢, there appear the T-duals of the undualized
directions.
If the same procedure is applied to the effective theory of the open

bosonic string, one can investigate the open string T-duality [5]. There are
four relevant theories in this context. The initial open string theory

S = ﬁ/d2£6+93“ﬂ+w(x)8,z”, (13)
DN

its effective closed string theory, obtained for the solution of the boundary
conditions

S = [ deorq 1Y, (0. 200 0" (14)
the T-dual of the effective theory
K’ 1f
s = [ 00,00 5 e 2o 000 (15)

and the open string theory having its effective theory equal to this T-dual
theory

S = [ oI W0y,

The effective theory background Hif ufu is composed of the effective met-

ric ij;f(q) = ny(q) = Gu — 4B,,(q)(G71)P? By, (q) and the effective
Kalb-Ramond field Bif/ (2bG) = —%5[gA0(2bG)g],, where A is an infinites-
imal part of the noncommutativity parameter for the initial coordinates.

Its T-dual background (@eij / )# is just its inverse. They are both defined
in the doubled spaces, given in terms of the appropriate coordinates and
their doubles. The relation between these background fields resembles the
relation of the closed string initial field composition and its T-dual. How-
ever, in that case T-dualization transformed a geometrical space into the
double space. In the open string T-duality, this change is not present.
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The T-dual space remains the geometrical space as the initial space and
the T-dual background fields keep the same form as the initial open string
background. In the open string case, the important role in the relation
between the T-dual backgrounds plays a matrix C, which is introduced
to define the connection between the variables of the open string theory
T-dual and the effective theory T-dual.

2. The symmetries

So, we found a number of physically equivalent string sigma models. Enough
to rise again the old question of what is the symmetry transformation of
fields. In a classical theory it is the change in fields which does not change
the classical action. If the string theory is defined by the o-model action,
the space-time fields appear in this world-sheet action as the coupling con-
stants. So, the standard technique for obtaining the symmetries is not
applicable for finding the symmetry transformation of these fields. One
should instead consider the conformal field theories corresponding to dif-
ferent field configurations [7]. In order for the transformation of field to be
a symmetry (which is in fact the symmetry of the space-time action) the
change in fields should correspond to change in energy-momentum tensors
of two isomorphic conformal field theories.
Let us therefore consider the energy-momentum tensor

1w .
Ty = :FE(G 1)“ Jtpltv, (16)

given in terms of currents ji, = m, + 2kIl4,,(x)z". The hamiltonian

corresponding to the initial string sigma model lagrangian is
HC — T_ - T+. (17)
The space-time equations of motion for the background fields (1), come

from the condition that the energy-momentum tensor on a quantum level
should satisfy the Virasoro algebras

[T (p(0)), To(p(@)] = ih[Te(p(0)) + T (p(2)] (0 — 7),
[T((0)), Tx(0(2)] = 0. (18)

It is known that the similarity transformation Ti — e_iffieif, which
causes the transformation of energy-momentum tensor

0Te(p) = —i[0. T(0)], (19)

preserves the Virasoro algebra.
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Let us consider the classical theory and suppose the coordinates and
momenta satisfy the standard Poisson brackets

{at(0), m(0)} = 6)0(0 — 7), (20)
consequently the Poisson brackets of currents are
{jau(0),j2u(3)} = £26T4,,,27(0)0(0 — 7) £ 26G 1 (2(0))8 (0 — ),
{ixu(0),j7 (@)} = £26T5p 27 (0)d(0 —0), (21)

where the generalized connection is given in terms of the Christoffel symbol
LCpvp = %(8,,GW + 0,Gw — 0,G,p) and the field strength of the field By,
By = 0uBy, + 0,B,, + 0,8, by

Uipwp =Lpvp £ Buwp. (22)

One can further calculate the Poisson brackets between the energy-
momentum tensor and currents

. 1 . . _
{Te(0),ju(@)} = £5-Typuifito(o =) = jeu(0)d'(0 - 7),

L 1 v _
(Te(0).j2u@)} = *5 Trpundlifols — o), (23)

to finally obtain that Ty satisfy the Virasoro algebra

{T1(0), T(3)} = —(Tx(0) + T1(0))8 (0 — 7),
{T(0), T ()} = 0. (24)

The classical analogue of transformation (19) is just

0T:(p) = {T.T(0) . (25)

Let us demonstrate that the known symmetry of the string theory, a
gauge transformation of the Kalb-Ramond field

OABuy = 0y — O A,

NG =0, (26)
given in terms of the vector gauge parameters A, causes the transformation
of the energy-momentum tensor which can be expressed in terms of the

generator of the symmetry I' as in (25). The change in G, and B, causes
the following transformation of Ty

1 /1 1
o - '/,L vV
(Hi_—QH(ECMBIWZE25AG!W)jij:F. (27)
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We consider a following expression
T , 1 T » »
L'y = 2/ doA,z'™ = — doA, (55 —j5), (28)
r kJ x

and calculate its bracket with the energy-momentum tensor

1 ey
{La, T (o)} = ﬁ(auAV - aVAu)JiJJF' (29)

Comparing (29) and (27), keeping in mind (26), we conclude that I' is the
generator of this symmetry.

2.1. The closed string symmetry and generators

Now, let us start the other way around. Let us suppose the background
fields undergo a small change in value

Oy — Uy + 014 (30)
This causes the following change of currents
8jap = 266104, (2)2", (31)
and consequently the energy-momentum tensor T4 = ¢ﬁ(G*1)””jiujiy
changes by
0Ty = i5ﬂiuu]}’ﬁj; (32)

If we demand this change to be equal to the change in the energy momentum
tensor (25), we will obtained the corresponding symmetry transformation
laws and their generators.

We assume the form of the generator of the general transformation (32),
is the same as in (28), and therefore consider the expression G = G + G_
with

G = [ do A (a(0r)) (). (33)

The Poisson brackets between energy-momentum tensor and these quanti-
ties are

_ 1 v
{1(0).G(9)} = £5 (DAL ) %
_ 1 v
{T4(0), G5(0)} = %5 - (DAL ) L g (34)
where the covariant derivatives are given by Dy,A” = 9,A” + 'L, AP =

D,A” + B”) A?. One demands the energy-momentum tensor transforms
only by a similarity transformation, and therefore the change (32) is in fact

1 Ly
0Ty ={G,T+} = %miuﬂih-
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This law determines the closed string symmetry transformations, al-
lowed by a similarity transformation. Separating the parameters in the
generators (33) into A4, = £, = A, one obtains that the symmetry trans-
formation of fields are

6GMV = _Q(Dufu + Dufu)a
5BMV = DHAZ, — DZ,A# — 2BMVP£P' (35)

The generator G of these transformations can be expressed as
G- / do 264, + 26,2, (36)

with _

A, =2¢"B, + A'G,, = A, —2B,,8". (37)
The form of the generator makes it T-dual invariant, which will be discussed
later.

3. The open string and its symmetries

From (35) and (37), we can conclude that the closed string is invariant
under the general coordinate transformations

5§G/u/ = _2(Dugu + Dufu)a
0¢Buy = —28°Bouy + 2(0uby — 0ub), by = Bu,t”, (38)

with D&, = 0,8 — 1,6, and the local gauge transformations

oAGu =0,
5AB;U/ = 8/1,Al/ - &/Aua (39)

where we omit tilde in lambda (A, — A,). These transformations are T-
dual to each other, as can be seen comparing their generators. The action
is invariant under these transformations in the closed string case, but is not
invariant in the open string case. In paper [6], the open string action was
proposed, which is invariant to the above transformations because of the
additional surface term which is added to the standard action.

For the open string, beside the equations of motion the minimal action
principle gives the boundary conditions on the string end-points

76‘51‘“‘ =0,

o=0,1

b =2 —2(GTIB)" i". (40)

For each of the coordinates one can fulfill these conditions by choosing
either the Neumann or the Dirichlet boundary condition. Let us mark the
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coordinates with the Neumann condition by 2z, a = 0,1,---,p and the
coordinates with the Dirichlet condition by 2*, i =p+1,---,D — 1.

The additional part of the open string action introduced in [6] is given
in terms of the boundary conditions and it reads

O=Tr

Sow =2 [ dr [k, (@)* — Au()(G ) o] (41)

o=0

This term makes the open string theory invariant, taken that the introduced
vector fields A, and A, transform as

SAA, = —A,,
SeA, = —E,. (42)

When the choice how to satisfy the boundary conditions is made, the surface
term (41) reduces to

(43)

o=0"

Sow =2 [ dr[ral (@)it — AP ()G

where AY and AP are (p + 1)- and (D — p — 1)-dimensional vector gauge
fields, first living on the Dp-brane and the second orthogonal to Dp-brane.
It is well known that the Kalb-Ramond field term of the action
/dz‘feaﬁBu,}(:L‘)aaxﬂaﬁx”

can be regarded as an analogue of the coupling of the Maxwell field

/ drA,z".

So, for the directions satisfying the Neumann boundary condition, the ac-
tion on the boundary equals

Sox; = 2% / ar Al @i, (44)
and it can be rewritten as
S=x / d2%¢ FL9 2089, 499547, (45)
with
Fay) = 0aA} () = 0,4) (2). (46)

The complete surface term can be written in terms of the field strengths
as

1
Sox. = “/d25 (Fi e+ 5T 0™ ) dazt O, (47)
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with
}'(“) = OpAov(z) — O Aou(z),
}'(S = 2(0p A1 (z) + Oy A1 (), (48)
where j
Ava =AY, Ao =2B;;(G1)FAD, (49)
and
A =0, Ay = _AZD' (50)

Comparing the boundary actions (45) and (47) with the action (5), we
conclude that the addition of the surface term has changed the background
fields by

Gu — G+ F) =G
B, — B, + f,ﬁ‘;) = B, (51)

3.1. The generators

Now that we have rewritten the open string action in the same form as
the standard closed string action, we can determine the open string sym-
metry transformations and their generators in analogy to the closed string
symmetry transformations and their generators. For the open string with
Neumann boundary conditions the symmetry transformations are just (in-

stead of (35))

0G, = —2D,& —2D,E,,
6B, = DuAy, — DA, +2B,f ¢, (52)
where B/, is a field strength of the changed Kalb-Ramond field B, —

B, = B, + ]-"Sf,), in comparison to the closed string case. However, the
field strength of the additional part is zero and therefore B,,,, = B,,. The
generator of these transformations is

G- / dor (2677, + 25(26" By + MG )i, (53)
with

7y = kG ()i — 2B, (z)z". (54)

The open string symmetry transformations, for all the remaining choices
for the boundary conditions are

5g;w = *Z(Duéu + Dufu)a
0B = DuA, —DyA, —2B,r¢,, (55)
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with the open string covariant derivative equal to
DA = 0,A" + T A,

where 1";# is a Christoffel symbol for the changed metric G,,, = G, —1—]-"&‘?,).

Again the field strength of the changed Kalb-Ramond field B,,, = B W—l—]—",gﬁ)
is just B, = Buup- The generator of the transformation is

G= / do [25/@ + szxya:’”}, (56)
with
T = kG (2)3” — 268, (z)2", (57)
and _
A-I/ - 2£'U‘Bw/ + Auguu - AI/ - 281//15“' (58)

Using (48), we obtain the connection
Tyvp =Tuwp — 20,0,A7,. (59)

So, if we chose Ag linear in coordinate, the connection will remain the
same as in the closed string case. Therefore, for such a choice, the symmetry
transformations remain the same in all the cases considered. The generators
however differ.

4. Conclusion

We considered the string theory of a closed and an open string, described
by a standard string sigma model and the modified open string action
introduced in [6]. We searched for the symmetry transformations of the
space-time fields in which the strings move. We found these symmetries
comparing the change in the energy-momentum tensor caused by a similar-
ity transformation and the transformation of fields. These transformations
are the symmetries because the conformal field theories corresponding to
the initial and the transformed field configurations are isomorphic.

We obtained the explicit form of symmetry transformations for the
closed string and the open string with the arbitrary choice of boundary
conditions. It turned out that for the appropriate choice of the form of the
vector fields on the boundary the symmetry transformations are the same
in all cases considered. The generators of these transformations are of the
following form

G= 2/d0 [fuﬂ'u + ./NXM/W’”] =Gc + G- (60)

Let us at this point include the T-duality into the consideration, namely the
complete T-dualization, i.e. the T-dualization along all initial coordinates.
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The T-dualization procedure gives the T-duality coordinate transformation
laws, which are connecting the coordinates of the initial string sigma model
S|x], defined in (5) and the totally T-dualized theory *S[y], defined in (6).
The coordinate transformation laws are obtained comparing the solutions
of the equations of motion for the gauge fields of the auxiliary actions. They
read

drat = —k OK [AVD)aLy, T 2:08% BT VO],

In the canonical form, in the zeroth order they reduce to
7 = Kka't

It is obvious, that in this case the components of the symmetry generator
(60) are T-dual to each other

Ge = G-

Therefore, the generator of symmetries is T-dual to itself.

The broader presentation of these investigations will be presented else-
where, as well as the consideration of the connection between generators in
the more complicated backgrounds.
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