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Abstract

In this review, noncommutative gravity is treated as a gauge the-
ory of the noncommutative SO(2, 3)? group. We assume that the
spacetime deformation is canonical. The Seiberg-Witten map is used
to express noncommutative fields in terms of the corresponding com-
mutative fields. In addition to pure gravity, we consider couplings to
matter fields, in particular, fermion and U(1) gauge field. The anal-
ysis can be extended to non Abelian gauge fields and scalar fields.

1. Introduction

Quantum Field Theory (QFT) and General Relativity (GR) are widely re-
garded as the two pillars of modern theoretical physics. Although these
theories have been tested to an excellent degree of accuracy in their re-
spective areas of applicability, occurrence of singularities in both of them
strongly indicates that they are incomplete. GR, as a classical theory of
gravitation, describes large-scale geometric structure of spacetime and its
relation to the distribution of matter. On the other hand, QFT, standing
on the principles of Quantum Mechanics and Special Relativity, provides
us with the Standard Model of elementary particles which successfully uti-
lizes the concept of gauge (local) symmetry to describe the fundamental
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particle interactions (electro-weak and strong). In spite of being funda-
mentally inconsistent with each other1, both theories (QFT and GR) rely
on the concepts of continuous spacetime and that of point particle. This is
indeed appropriate, but, in the case of GR, only at large distances and only
approximately. In order to establish the, still elusive, theory of ”Quantum
Gravity”, i.e. the theory of the quantum structure of spacetime, at very
short distances (very high energies) we must go beyond the usual concepts
of QFT and GR to which we are accustomed. Variety of ways of treating
the problem has been proposed so far, stemming from String Theory, Loop
Quantum Gravity, Noncommutative (NC) Field Theory, etc.

Recently, a lot of attention has been devoted to NC gravity, as a spe-
cial case of NC Field Theory that doesn’t include matter fields, and many
different approaches have been developed. In [1, 2, 3] a deformation of
pure Einstein gravity via Seiberg-Witten (SW) map is proposed. Twist
approach was explored in [4, 5, 6, 7]. Some other proposals are given in
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The connection to Super-
gravity was established in [21, 22]. Finally, the most relevant for our work
is the approach developed by the members of our group [23, 24, 25, 26].
In this approach NC gravity is treated as a gauge theory of canonically
deformed Anti de Sitter (AdS) group SO(2, 3)? (NC version of ordinary
SO(2, 3) group).

A next natural step is to tackle the problem of introducing matter fields
on NC spacetime and their interaction with NC gravity. Our theoretical
model is the extension of the previously established SO(2, 3)? model of pure
NC gravity [23, 24, 25, 26]. During the development of this model, the sub-
ject was treated from a different point of view by Aschieri and Castellani
[27, 28, 29, 30]. Their model, based on the deformed SO(1, 3) symmetry,
is significantly different from the one that we propose. On the formal side,
in their SO(1, 3)? model, there is a problem of vierbein not being a well-
defined gauge field. This is not an issue if we use SO(2, 3) gauge group.
More importantly, our model leads to some very definite physical predic-
tions and allows us to actually derive them in detail, while on the other hand
no elaboration concerning any potential physical effects has been given by
the upper mentioned authors. Also, we should emphasize that the differ-
ences between the two models revealed themselves already in the case of
pure gravity, namely, the canonical NC deformation of Minkowski space
actually is obtained in SO(2, 3)? model [23].

1Except in a certain narrow range of parameters where semi-classical discipline of
QFT in curved spacetime background provides us with some reliable predictions, like the
well-known Hawking radiation.
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2. Introducing matter fields on NC spacetime

2.1. Deformation quantization

The construction of a NC Field Theory, i.e. Field Theory on NC spacetime,
is based on the general method of deformation quantization via NC ?-
products developed (mainly) by Flato, Sternheimer and Kontsevich [31,
32, 33]. One speaks of a deformation of an object/structure whenever
there is a family of similar objects/structures for which we can parametrise
their ”distortion” from the original, ”undeformed” one. In physics, this
so called deformation parameter appears as some fundamental constant
of nature that measures the deviation from the ”classical” (undeformed)
theory. When it is zero, the classical theory is restored. We want to deform
the structure of continuous spacetime. This way of ”quantizing” spacetime
is essentially different from the standard QFT quantization procedure for
matter fields. The spacetime coordinates (ordinary 3 + 1) are proclaimed
to be mutually incompatible. Analogously to the Heisenberg’s uncertainty
relations for a conjugate coordinate-momentum pair of a particle, there
exist a non-zero lower bound for the product of uncertainties ∆xµ∆xν for
a pair of two different coordinates. In order to capture this ”fuzziness”
of spacetime, an abstract algebra of NC coordinates is introduced as a
deformation of the ordinary structure. These NC coordinates, denoted by
x̂µ, satisfy some non-trivial commutation relations, and so, it is no longer
the case that x̂µx̂ν = x̂ν x̂µ. Abandoning this basic property of spacetime
leads to various new physical effects that were not present in the theory
based on classical spacetime. The simplest case of noncommutativity is the
so called canonical noncommutativity, defined by

[x̂µ, x̂ν ] = iθµν , (2.1)

where θµν are components of a constant antisymmetric matrix. Other im-
portant choices include Lie algebra-like deformation and κ-deformation.

Instead of deforming abstract algebra of coordinates one can take al-
ternative, but equivalent, approach in which noncommutativity appears in
the form of NC products of functions (NC fields) of commutative coordi-
nates. These products are called star products (?-products). Specifically, to
establish canonical noncommutativity, we use NC Moyal-Weyl ?-product,

(f̂ ? ĝ)(x) = e
i
2
θαβ ∂

∂xα
∂

∂yβ f(x)g(y)|y→x . (2.2)

The first term in the expansion of the exponential is the ordinary commu-
tative point-wise multiplication of functions. Using this definition one an
easily check that

[xµ ?, xν ] = iθµν , (2.3)

which means that the Moyal-Weyl ?-product (2.2) provides a suitable repre-
sentation of the canonical noncommutativity. The quantity θµν is a ”small”
deformation parameter that has dimensions of (length)2. It is a fundamen-
tal constant like the Planck length or the speed of light.
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2.2. Enveloping algebra approach and the Seiberg-Witten map

In classical (undeformed) gauge field theories, generators TA (A = 1, 2, ..., N)
of a gauge group (generally non-Abelian) satisfy some N -dimensional Lie
algebra commutation relations:

[TA, TB] = fCABTC , (2.4)

with structure constants fCAB. Variation of the matter field ψ under in-
finitesimal gauge transformation is given by:

δαψ = iαψ , (2.5)

where infinitesimal gauge parameter α(x) = αA(x)TA belongs to the Lie
algebra of the gauge group and depends on the spacetime coordinates.
These transformations close in the algebra:

[δα, δβ] = δ−i[α,β] . (2.6)

Covariant derivative of the ψ field is

Dµψ = ∂µ − iωµψ , (2.7)

where ωµ(x) = ωAµ (x)TA is the Lie algebra-valued gauge potential.

Analogously, a variation of a NC matter field ψ̂ under deformed infinitesi-

mal gauge transformation with NC gauge parameter Λ̂(x) is defined as:

δ?Λψ̂ = iΛ̂ ? ψ̂ . (2.8)

However, there is a problem concerning the closure condition for NC gauge

transformations. If the parameter Λ̂ is supposed to be Lie algebra-valued,

Λ̂(x) = Λ̂A(x)TA, it follows that

[δ?Λ1
?, δ?Λ2

]ψ̂ = (Λ̂1 ? Λ̂2 − Λ̂2 ? Λ̂1) ? ψ̂

=
1

2

(
[Λ̂A1

?, Λ̂B2 ]{TA, TB}+ {Λ̂A1 ?, Λ̂B2 }[TA, TB]
)
? ψ̂ .(2.9)

The commutator of two NC gauge transformations does not generally close
in the Lie algebra of gauge group because the anti-commutator {TA, TB}
does not in general belong to this algebra. To overcome this difficulty, we
apply the enveloping algebra approach. The enveloping algebra is ”large
enough” to ensure the closure property of NC gauge transformations if NC

gauge parameter Λ̂ takes values in it. The covariant derivative of NC field

ψ̂ is defined by:

Dµψ̂ = ∂µψ̂ − iω̂µ ? ψ̂ . (2.10)
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Here we introduced NC gauge potential ω̂µ that also belongs to the envelop-
ing algebra and can be represented in its basis. But, enveloping algebra has
an infinite basis and it seems that by invoking it we are actually introducing
infinite number of new degrees of freedom (new fields) in the NC-deformed
theory. The solution to the problem is provided by the Seiberg-Witten
map [34, 35]. It relies on the fact that NC quantities can be represented
as a perturbation series in powers of the deformation parameter θαβ with
expansion coefficients built out of the commutative fields, e.g. NC spinor

ψ̂ field can be represented as:

ψ̂ = ψ − 1

4
θαβωα(∂β +Dβ)ψ +O(θ2) . (2.11)

where ωα is the ordinary gauge potential. It is clear that at the zeroth
perturbative order NC fields consistently reduce to their undeformed coun-
terparts.

2.3. Commutative model and its NC deformation

The first step in our method is to construct a well-defined ”classical” (unde-
formed) commutative model of an action that will subsequently be deformed
by substituting ordinary commutative point-wise multiplication with NC
Moyal-Weyl ?-product and replacing ordinary commutative fields by their
NC counterparts. Classical action is built out of the commutative fields on
Minkowski space that transform either in the fundamental or the adjoint
representation of the gauge symmetry group. For pure gravity this will be
SO(2, 3) ”gravitational” gauge symmetry but if we want to include inter-
acting Dirac fermions in the theory we must upgrade it to SO(2, 3)⊗U(1).
The SW map than ensures that NC-deformed action possesses deformed
gauge symmetry, i.e. SO(2, 3)? ⊗ U(1)?. Gravity emerges only after suit-
able gauge fixing, i.e. gauge symmetry breaking, and there is no need for
introducing metric tensor a priori. The commutative action must be consis-
tent with the action for classical electrodynamics in curved spacetime with
the usual SO(1, 3) ⊗ U(1) gauge symmetry. Therefore we must break the
SO(2, 3) gauge symmetry down to the local Lorentz SO(1, 3) symmetry.
We accomplish this by introducing an auxiliary field φ and fixing its value.
Assuming that deformation parameter is ”small”, we perturbatively expend
the NC action in powers of the deformation parameter via SW map. In this
way we ensure the invariance of the NC expansion under original udeformed
gauge transformations order-by-order. The first order term in the NC ex-
pansion contains the ”strongest” NC effects and for that reason a model
that predicts non vanishing first order NC correction after the symmetry
breaking would be preferred.

2.4. SO(2, 3)? model of NC gravity

The SO(2, 3)? model of NC gravity is established in [23, 24, 25, 26]. In
this approach, NC gravity is treated as as a gauge theory of canonically
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deformed Anti de Sitter (AdS) gauge group SO(2, 3)?. The generators of
SO(2, 3) group are denoted by MAB (group indices A,B, ... taking values:
0, 1, 2, 3, 5) and they satisfy the AdS algebra:

[MAB,MCD] = i(ηADMBC + ηBCMAD − ηACMBD − ηBDMAC) , (2.12)

where ηAB is the 5D flat metric with signature (+,−,−,−,+). By intro-
duce momenta generators as Pa = 1

lMa5, where l is a constant length scale,
we can recast the AdS algebra (2.12) in the following form:

[Mab,Mcd] = i(ηadMbc + ηbcMad − ηacMbd − ηbdMac) , (2.13)

[Mab, Pc] = i(ηbcPa − ηacPb) , (2.14)

[Pa, Pb] = − i

2l2
Mab . (2.15)

In the limit l →∞ the AdS algebra reduces to the Poincare algebra. This
is known as the Wigner-Inonu contraction. A realisation of (2.12) algebra
can be obtained from 5D gamma matrices ΓA that satisfy Clifford algebra:
{ΓA,ΓB} = 2ηAB; the generators are given by MAB = i

4 [ΓA,ΓB]. One
choice of 5D gamma matrices is ΓA = (iγaγ5, γ5), where γa are the usual 4D
gamma matrices. The local Lorentz indices a, b, ... take values: 0, 1, 2, 3. In
this particular representation, SO(2, 3) generators are: Mab = i

4 [γa, γb] =
1
2σab and M5a = 1

2γa. The gauge potential ωµ of SO(2, 3) gauge group gives

us the spin-connection ω ab
µ and the vierbein eaµ field:

ωµ =
1

2
ω AB
µ MAB =

1

4
ω ab
µ σab −

1

2l
eaµγa . (2.16)

Note that in this framework the vierbein field eaµ is treated as an additional
gauge field, standing on equal footing with the spin-connection (which is
the gravitational gauge field for the Lorentz group SO(1, 3)). This is an
important advantage of the theory with SO(2, 3) gauge symmetry. Vierbein
is related to the metric tensor by ηabe

a
µe
b
ν = gµν and e = det(eaµ) =

√
−g.

The ”gravitational” field strength associated with the gauge potential ωµ
is

Fµν = 2∂(µων) − i[ωµ, ων ] =
(
R ab
µν −

2

l2
ea(µe

b
ν)

)σab
4
− 1

l
T a
µν

γa
2
, (2.17)

where R ab
µν is the curvature tensor and T a

µν the torsion:

R ab
µν = ∂µω

ab
ν − ∂νω ab

µ + ω ac
µ ω cb

ν − ω bc
µ ω ca

ν , (2.18)

T a
µν = ∇µeaν −∇νeaµ . (2.19)
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A necessary step in obtaining GR from SO(2, 3) model is the gauge fixing,
i.e. symmetry breaking from SO(2, 3) down to SO(1, 3). For that reason
one usually introduces an auxiliary field φ = φAΓA as in [36, 37]. We break
the symmetry by fixing the value of the auxiliary field, in particular, by
setting φa = 0 and φ5 = l. This field is a spacetime scalar and an internal-
space vector and satisfies the constraint: φAφA = l2. It transforms in the
adjoint representation of SO(2, 3) and its covariant derivative is given by

Dµφ = ∂µφ− i[ωµ, φ] . (2.20)

After the gauge fixing, the components of Dµφ reduce to (Dµφ)a = eaµ and

(Dµφ)5 = 0. In this way the vierbein field emerges from the auxiliary field
φ after the symmetry breaking.

In the papers of Stelle, West and Wilczek [36, 37] a commutative action
for pure gravity with SO(2, 3) gauge symmetry was constructed. Also, in
the papers of Chamseddine and Mukhanov [38, 39], GR is formulated by
gauging SO(1, 4) or, more suitable for SUGRA, SO(2, 3) group. Building
on their work, in [24] the SO(2, 3) model of pure gravity action and its
NC deformation were analysed. The commutative action consists of three
parts:

S1 =
ilc1

64πGN
Tr

∫
d4x εµνρσFµνFρσφ , (2.21)

S2 =
c2

128πGN l
Tr

∫
d4x εµνρσFµνDρφDσφφ+ h.c. , (2.22)

S3 = − ic3

128πGN l
Tr

∫
d4x εµνρσDµφDνφDρφDσφφ , (2.23)

After the gauge fixing we obtain:

S = − 1

16πGN

∫
d4x

(
c1l

2

16
εµνρσεabcdR

ab
µν R cd

ρσ +
√
−g
(

(c1 + c2)R

− 6

l2
(c1 + 2c2 + 2c3)

))
. (2.24)

For the sake of generality, three a priori undetermined dimensionless con-
stants are introduced. These can be fixed by some consistency conditions.
The first part is the topological Gauss-Bonnet term which doesn’t effect
the equations of motion, and so, we can set c1 = 0. The Einstein-Hilbert
term requires c1 + c2 = 1, while the absence of the cosmological constant
is provided with c1 + 2c2 + 2c3 = 0.

To construct a NC gravity model, we start from a general action of the
form

Ŝ = c1Ŝ1 + c2Ŝ2 + c3Ŝ3 , (2.25)
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with

Ŝ1 =
il

64πGN
Tr

∫
d4x εµνρσF̂µν ? F̂ρσ ? φ̂ ,

Ŝ2 =
1

64πGN l
Tr

∫
d4x εµνρσφ̂ ? F̂µν ? D̂ρφ̂ ? D̂σφ̂+ c.c. ,

Ŝ3 = − i

128πGN l
Tr

∫
d4x εµνρσDµφ̂ ? Dν φ̂ ? D̂ρφ̂ ? D̂σφ̂ ? φ̂ .

The action is formulated in the 4-dimensional Minkowski space as an or-
dinary NC gauge theory. It is invariant under the NC SO(2, 3)? gauge
transformations and the SW map ensures that after the perturbative ex-
pansion in powers of θαβ, it possesses the ordinary commutative SO(2, 3)
gauge symmetry order-by-order in θαβ. It was found that the first order
NC correction to the commutative action equals zero. This result was also
obtained in [40]. The first non-vanishing correction is quadratic in the NC
parameter; it is long and difficult to calculate. However, different limits of
the second order correction can be analyzed. We are interested in the low
energy expansion: we keep only the terms of the zeroth, the first and the
second order in the derivatives of the vierbeins (linear in Rαβγδ, quadratic
in T a

αβ ). Then, the expanded action is given by

SNC = − 1

16πGN

∫
d4x e

(
R− 6

l2
(1 + c2 + 2c3)

)
+

1

128πGN l4

∫
d4x e θαβθγδ

(
(−2 + 12c2 + 38c3)Rαβγδ (2.26)

+(4− 18c2 − 44c3)Rαγβδ − (6 + 22c2 + 36c3)gβδRαµγ
µ +

6 + 28c2 + 56c3
l2

gαγgβδ

+(5− 9

2
c2 − 7c3)T

a
αβTγδa + (−10 + 9

2
c2 + 14c3)T

a
αγTβδa + (3− 3c2 − 2c3)TαβγT

µ
δµ

+(1 + 2c2)TαβρT
ρ
γδ + 8TαγδT

µ
βµ − (2c2 + 4c3)TαγρT

ρ
δβ

+(2c2 + 4c3)gβδT
σ

γσ T
ρ

αρ − (2c2 + 4c3)TαρσT
σρ
γ gβδ + (−2 + 4c2 + 18c3)Tαβγe

ρ
a∇δeaρ

+(6− 8c2 − 8c3)Tαγβe
ρ
a∇δeaρ + (2 + 4c2 + 12c3)T

µ
αγ e

a
β∇δeaµ − T µ

αβ e
a
δ∇γeaµ

+(−6− 8c2 − 16c3)Tδρβe
ρ
a∇αeaγ − (2c2 + 4c3)gαγT

µ
µβ e

ρ
a∇δeaρ − (2c2 + 4c3)gβδT

σ
αρ e

ρ
a∇γeaσ

−(4 + 16c2 + 32c3)e
µ
aebβ∇γeaα∇δebµ + (4 + 12c2 + 32c3)eδae

µ
b∇αe

a
γ∇βebµ

−(2 + 4c2 + 8c3)gβδe
µ
ae
ν
b∇γeaµ∇αebν + (2 + 4c2 + 8c3)gβδe

µ
ae
ρ
c∇αeaρ∇γecµ

)
.

Equations of motion are obtained by varying with respect to the vierbeins
and the spin connection independently:

δeaµ : R cd
αγ eγde

α
ae
µ
c −

1

2
eµaR+

3

l2
(1 + c2 + 2c3)eµa = τ µ

a

= −8πGN
e

δS
(2)
NC

δeaµ
, (2.27)

δω ab
µ : T c

ac e
µ
b − T

c
bc e

µ
a − T

µ
ab = S µ

ab = −16πGN
e

δS
(2)
NC

δω ab
µ

. (2.28)
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The effective energy-momentum tensor τ µ
a and the effective spin-tensor

S µ
ab depend on θαβ and we can conclude that noncommutativity is a source

of curvature and torsion. Using equation (2.27) it can be shown [23] that
a NC correction to Minkowski metric is of the form:

g00 = 1− 11

2l6
θ0mθ

0
nx

mxn − 11

8l6
θ2r2 = 1−R0m0nx

mxn ,

g0i = − 11

3l6
θ0mθ

i
nx

mxn = −2

3
R0minx

mxn , (2.29)

gij = −δij −
11

6l6
θimθ

j
nx

mxn +
11

24l6
δijθ2r2 − 11

24l6
θ2xixj

= −δij −
1

3
Rimjnx

mxn ,

where Rµνρσ are the components of the Reimann tensor for this solution.

Thus, in SO(2, 3)? model, there actually exists a canonical NC defor-
mation of Minkowski space. This result suggests that the coordinates xµ

we started with are actually Fermi normal coordinates. These are iner-
tial coordinates of a local observer moving along a geodesic and can be
constructed in a small neighbourhood along the geodesic (inside a small
cylinder surrounding the geodesic) [41, 42, 43]. The breaking of diffeo-
morphism symmetry due to canonical noncommutivity we understand as a
consequence of working in a preferred reference system given by the Fermi
normal coordinates. A local observer moving along the geodesic measures
θαβ to be constant. In any other reference frame this will not be the case.

3. Commutative actions for matter fields and their NC de-
formation

First, we will consider non-interacting fermions in canonically deformed
spacetime. In our recant paper entitled Dirac field and gravity in NC
SO(2, 3)? model [44] we have proposed the following kinetic-type action
for the Dirac spinor field, invariant under local SO(2, 3) transformations:

Sψ,kin =
i

12

∫
d4x εµνρσ

[
ψ̄DµφDνφDρφDσψ −Dσψ̄DµφDνφDρφψ

]
.

(3.30)
After the symmetry braking it becomes:

Sψ,kin =
i

2

∫
d4x e

[
ψ̄γσ∇σψ −∇σψ̄γσψ

]
− 2

l

∫
d4x e ψ̄ψ , (3.31)

which is exactly the Dirac action in curved spacetime for spinors of mass
2/l. To obtain fermions with arbitrary mass m, not just 2/l, we have to
include the following additional ”mass terms” (terms of the type ψ̄...ψ) in
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the action:

S
(1)
ψ,m =

i

2
c1

(m
l
− 2

l2

)∫
d4x εµνρσ

[
ψ̄DµφDνφDρφDσφφψ + ψ̄φDµφDνφDρφDσφψ

]
,

S
(2)
ψ,m =

i

2
c2

(m
l
− 2

l2

)∫
d4x εµνρσ

[
ψ̄DµφDνφDρφφDσφψ + ψ̄DµφφDνφDρφDσφψ

]
,

S
(3)
ψ,m = i c3

(m
l
− 2

l2

)∫
d4x εµνρσ ψ̄DµφDνφφDρφDσφψ . (3.32)

If we demand that the a priori undetermined dimensionless coefficients c1,
c2, and c3 satisfy the constraint: c2 − c1 − c3 = − 1

24 , after the symmetry
breaking, the sum of the three terms in (3.32) becomes:

Sψ,m = −
(
m− 2

l

)∫
d4x e ψ̄ψ , (3.33)

and the total action, Sψ = Sψ,kin + Sψ,m, is exactly equal to the Dirac
action for spinors of mass m in curved spacetime,

Sψ =
i

2

∫
d4x e

[
ψ̄γσ∇σψ −∇σψ̄γσψ

]
−m

∫
d4x e ψ̄ψ . (3.34)

NC-deformed version of this spinorial action (denoted by a ”hat” symbol) is
obtained by replacing the ordinary field multiplication with NC ?-product
of NC-deformed fields; for example, kinetic term (3.30) becomes:

Ŝψ,kin =
i

12

∫
d4x εµνρσ

[̂̄ψ ? (Dµφ̂) ? (Dν φ̂) ? (Dρφ̂) ? (Dσψ̂)

−(Dσ
̂̄ψ) ? (Dµφ̂) ? (Dν φ̂) ? (Dρφ̂) ? ψ̂

]
. (3.35)

This action is hermitian (up to a surface term that vanishes) and it is
endowed with deformed SO(2, 3)? gauge symmetry. It turns out that the
leading term in the NC expansion does not vanish after the symmetry
breaking and so we obtain linear NC correction to the classical Dirac action
in curved spacetime. The calculation is long and tedious and we will not
present the details here. Schematically, the spinorial piece is given by:

Ŝ
(1)
ψ = θαβ

∫
d4x e ψ̄

(
A ρσ
αβ ∇ρ∇σ + B σ

αβ ∇σ + Cα∇β +Dαβ
)
ψ . (3.36)

Objects A,B, C,D are complicated functions of geometric quantities, e.g.
there appear new interactions like: ψ̄σ σ

α ∇β∇σψ, ψ̄R ρσ
αβ γρ∇σψ, ψ̄T σ

αβ ∇σψ,

ψ̄σαβψ, etc. More importantly, we want to emphasize the fact that this
θ-linear NC correction pertains even in the limit of flat spacetime. This
enables us to derive some tangible phenomenological consequences of our
model that could potentially be tested experimentally in a not to far future.
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3.1. Free electron in flat NC spacetime

One peculiar property of our model is that noncommutativity effects pertain
even in flat spacetime. The NC-deformed Dirac equation for an electron in
Minkowski space can be derived by varying the action (3.36) with respect
to ψ̄. In particular, assuming for simplicity that θ12 = −θ21 = θ 6= 0 and
all others equal to zero, we obtain:[

i/∂ −m− θ

2l
(σ σ

1 ∂2∂σ − σ σ
2 ∂1∂σ) +

7iθ

12l2
(γ0γ5∂3 − γ3γ5∂0)

−θ
(
m

2l2
+

1

3l3

)
σ12

]
ψ = 0 . (3.37)

Non trivial solutions of this homogeneous matrix equation exist, if and
only if, the determinant of the matrix that acts on ψ equals zero. This
condition will give us the dispersion relation for an electron. Specifically,
for an electron moving along the z-direction, i.e. in the direction orthogonal
to the noncommutative x, y-plane there are four different solutions for the
energy function:

E1,2(p) = Ep ∓
[
m2

12l2
− m

3l3

]
θ

Ep
+O(θ2) ,

E3,4(p) = −Ep ±
[
m2

12l2
− m

3l3

]
θ

Ep
+O(θ2) , (3.38)

with Ep =
√
m2 + p2

z. This is reminiscent of the well known Zeeman
effect. The deformation parameter θ plays the role of a constant background
magnetic field that causes the splitting of electron energy levels.

Working in the rest frame (p = 0), from (3.38) we conclude that electron’s
mass gets modified due to noncommutativity of the background spacetime
and the correction is linear in the deformation parameter:

E1,2(0) = m∓
[
m

12l2
− 1

3l3

]
θ +O(θ2) ,

E3,4(0) = −m±
[
m

12l2
− 1

3l3

]
θ +O(θ2) . (3.39)

Another important prediction of SO(2, 3)? model is that NC energy levels
are helicity-dependent. The electron states (presented in [44]) with different
helicity have different energies. This means that NC space effectively acts
as a birefringent medium for electrons propagating in it.



196 M. Dimitrijević Ćirić, D. Gočanin, N. Konjik and V. Radovanović

Such NC modification of the non-interacting theory could not have be
achieved by directly introducing noncommutativity into the free Dirac ac-
tion, i.e. by minimal substitution,

Ŝ =

∫
d4x ̂̄ψ ? (iγµ∂µ −m)ψ̂ , (3.40)

because generally
∫
d4x f̂ ? ĝ =

∫
d4x fg, and so, non-interacting theories

are not modified due to noncommutativity since they include only kinetic
term which is quadratic.

3.2. Interacting Dirac fermions; U(1) gauge field

In order to have interacting Dirac fermions we need to incorporate U(1)
gauge field into our framework. Accordingly, the gauge group must be
upgraded from SO(2, 3) to SO(2, 3)⊗U(1). In the paper entitled Noncom-
mutative Electrodynamics from SO(2, 3)? model of Noncommutative Grav-
ity [45] (under revision), we propose the following action for the U(1) gauge
field:

SA = − 1

16l
T r

∫
d4x εµνρσ

{
fFµν +

i

3!
f2DµφDνφ

}
DρφDσφφ+ h.c. (3.41)

It includes an additional auxiliary field f = 1
2f

ABMAB. Like φ, this field
transforms in the adjoint representation of SO(2, 3) and it is invariant under
U(1) (i.e. not charged). Its role is to produce the canonical kinetic term
for U(1) gauge field in curved spacetime since we cannot define the Hodge
dual operation without prior knowledge of the metric tensor.

After the gauge fixing, the purely gravitational part of the action (3.41)
vanishes and we obtain:

SA =
1

2

∫
d4x e fabeµae

ν
bFµν +

1

4

∫
d4x e (fabfab + 2fa5f 5

a ) . (3.42)

We use equations of motion for the components of the auxiliary field f ,

fa5 = 0 , fab = −eµaeνbFµν . (3.43)

to eliminate the auxiliary field in the action (3.42) and this leaves us with
the canonical kinetic term for pure U(1) gauge field in curved spacetime:

SA = −1

4

∫
d4x e FµνFµν . (3.44)
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3.3. Electron in background magnetic field

With the U(1) gauge field include, we can investigate the behaviour of an
electron in background electromagnetic field, see [45] for detail. The action
for NC electrodynamics in Minkowski space up to the first order in θαβ is
given by:

Ŝflat =

∫
d4x ψ̄(i/D −m)ψ − 1

4

∫
d4x FµνFµν

−θαβ
∫
d4x

[
1

8
FαβFµνFµν +

1

2
FαµFβνFµν

]
+θαβ

∫
d4x ψ̄

[
− 1

2l
σ σ
α DβDσ +

7i

24l2
ε ρσ
αβ γργ5Dσ −

(
m

4l2
+

1

6l3

)
σαβ

+
3i

4
Fαβ/D − i

2
FαµγµDβ −

(
3m

4
− 1

4l

)
Fαβ

]
ψ . (3.45)

where we introduced the flat spacetime covariant derivative Dµ = ∂µ− iAµ
(for electron q = −1). We notice immediately that this action is different
from the actions for NC electrodynamics already present in the literature
[46, 47, 48]. The new interaction terms, specific to the SO(2, 3)? model,
appear as residual from the gravitational interaction and they lead to some
non trivial physical consequences, such as, for instance, a deformation of
electron’s dispersion relation.

By varying NC action (3.45) with respect to ψ̄ we obtain NC-deformed
Dirac equation for electron coupled to some background electromagnetic
field Aµ: (

i/∂ −m+ /A+ θαβMαβ

)
ψ = 0 . (3.46)

In [45] we investigate a special case of an electron propagating in constant
background magnetic field B = Bez in order to see how noncommutativity
deforms its energy levels.

Classical (undeformed) energy levels for a relativistic electron are given by:

E(0)
n,s =

√
p2
z +m2 + (2n+ s+ 1)B . (3.47)

where s = ±1 is the σz eigenvalue for the spin-state of an electron. We are

looking for linear NC correction E
(1)
n,s ∼ θ of the energy levels (3.47). If we

assume that only two spatial coordinates are mutually incompatible, e.g.
[x1, x2] = iθ12, than we have θ12 = −θ21 =: θ 6= 0 and all other components
of θαβ equal to zero. In this case we obtain:

E(1)
n,s = − θs

E
(0)
n,s

[
m2

12l2
− m

3l3

]
− θBs

E
(0)
n,s(E

(0)
n,s +m)

[
m

12l2
− 1

3l3

]
(2n+ s+ 1)

+
θB2

2E
(0)
n,s

(2n+ s+ 1) . (3.48)



198 M. Dimitrijević Ćirić, D. Gočanin, N. Konjik and V. Radovanović

Non-relativistic limit of NC energy levels is obtained by expanding un-

deformed energy function E
(0)
n,s assuming that p2

z, B � m2; for a non-
relativistic electron constrained to move in NC x, y-plane (pz = 0) expend-
ing (3.48) we obtain:

En,s =

[
m− sθ

(
m

12l2
− 1

3l3

)]
+

2n+ s+ 1

2m
Beff −

(2n+ s+ 1)2

8m3
B2
eff , (3.49)

where we introduced Beff = (B + θB2) as an effective magnetic field.

If we compare the expression for NC-deformed energy levels (3.49) with
the one for undeformed energy levels, we conclude that the only effect of
constant spacetime noncommutaivity is to modify the mass of an electron
and the value of the background magnetic field. This interpretation is in
accord with String Theory. In the famous paper of Seiberg and Witten [35]
it is argued that coordinate functions of the endpoints of an open string
constrained to a D-brane in the presence of a constant Neveu-Schwarz B-
field (equivalent to a constant magnetic field on the brane-world) satisfy
constant noncommutativity algebra. The implication is that a relativistic
field theory on NC spacetime can be interpreted as a low energy limit of
the theory of open strings.

From energy function (3.49) we can derive NC-deformed magnetic moment
of an electron in the state (n, s) for weak magnetic field:

µn,s = −∂En,s
∂B

= −µB(2n+ s+ 1)(1 + θB), (3.50)

where, if we restore the units, µB = e}
2mc is the Bohr magneton. We recog-

nise −(2n+ 1)µB as the diamagnetic moment of an electron and −sµB as
the spin magnetic moment. The θB-term is another potentially observable
phenomenological prediction of our model. It is a linear NC correction to
the electron’s dipole moment.

4. Conclusion

In this article we discussed coupling of matter fields with gravity in the
framework of NC SO(2, 3)? gauge theory of gravity. Taking the enveloping
algebra approach, along with the Seiberg-Witten map, we constructed the
perturbative actions and derived the deformed equations of motion for the
Dirac field coupled to U(1) gauge field and gravity. In this way we have
established the NC Electrodynamics in curved spacetime induced by NC
SO(2, 3)? gravity. The fact that NC effects pertain even in flat spacetime
limit of this model enables one to study behaviour of an electron in a
background electromagnetic field. Corrections to the relativistic Landau
levels of an electron in a constant magnetic field are given by (3.48) and
their non-relativistic limit is (3.49). The NC corrections are different for



The noncommutative SO(2, 3)? gravity model 199

different Landau levels. It is well known that the physics of the Lowest
Landau Level (LLL) is closely related to the physics of Quantum Hall Effect
(QHE). Using the obtained results, we plan to investigate NC corrections
to the QHE. In this way, together with the induced NC magnetic moment
(3.50) and the NC-induced magnetization in materials we hope to obtain
some constraints on noncommutaivity parameter from condensed matter
experiments.

Starting from (3.45) one can check renormalizability of the model. It is
known that, the so-called Minimal NC Electrodynamics, a theory obtained
by directly introducing NC Moyal-Weyl ?-product in the classical Dirac
action for fermions coupled with U(1) gauge field in Minkowski space,

Ŝ =

∫
d4x ̂̄ψ ? (iγµDµ −m)ψ̂ − 1

4

∫
d4x F̂µν ? F̂

µν ,

is not a renormalizabile theory because of the fermionic loop contributions
[46, 47, 48]. It would be interesting to see if additional terms present in
the NC SO(2, 3)? gravity induced Electrodynamics (3.45) can improve this
behaviour.

The NC SO(2, 3)? gravity model also enables one to introduce coupling
with scalar and non-Abelian gauge fields. In this way, it is possible to
progress towards generalizing Standard Model to a NC spacetime using the
setup we described in this article.
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