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Abstract

We investigate the integrability of geodesics in the five-dimensional
Sasaki-Einstein space T 1,1. We construct explicitly the constants of
motion and prove the complete integrability of geodesic motions. This
property is also valid for geodesic motions on its Calabi-Yau metric
cone. Having in mind that the metric cone is singular at the apex of
the cone, we extend the analysis of integrability for resolved conifolds.
It is shown that in the case of the small resolution the integrability
is preserved, while in the case of the deformation of the conifold it is
lost.
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1. Introduction

Recently there has been much interest in contact geometry in connection
with some modern developments in mathematics and theoretical physics
[1, 2]. Sasaki-Einstein geometry is considered important in studies of con-
sistent string compactification and in the context of AdS/CFT correspon-
dence [3, 4].

The symmetries of Sasaki-Einstein spaces play a significant role in con-
nection with the study of integrability properties of geodesic motions and
separation of variables of the classical Hamilton-Jacobi or quantum Klein-
Gordon, Dirac equations.

The homogeneous toric Sasaki-Einstein on S2×S3 is usually referred to
as T 1,1 and was considered as the first example of toric Sasaki-Einstein/qui-
ver duality [5]. The AdS × T 1,1 is the first example of a supersymmetric
holographic theory based on a compact manifold which is not locally S5.
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In this paper we are concerned with integrability of geodesic motions
in Sasaki-Einstein space T 1,1 ant its Calabi-Yau metric cone. In general
the metric cone of a Sasaki-Einstein manifold is singular at the apex of
the cone. On the other hand there are promising generalizations of the
original AdS/CFT correspondence by considering D3-branes on conifold
singularities [5, 6].

In the case of the metric cone over T 1,1, the singularity at its apex can
be smoothed out in two different ways [7]. On can substitute the apex by
an S3 (deformation) or by an S2 (small resolution).

In a recent paper [8] it has been constructed the complete set of con-
stants of motion in T 1,1 space which provides the complete integrability of
the geodesic flow. In what follows we extend the investigation of the inte-
grabilty for the geodesic flow on the Calabi-Yau metric cone of T 1,1 space
and its resolved conifolds. We find that the geodesic motions are completely
integrable in the case of the metric cone as well as its small resolution of
the apex singularity. In opposition to these cases, the geodesic flow on the
deformed metric cone is not completely integrable.

The paper is organized as follows. In the next Section we present some
mathematical preliminaries regarding the Sasaki-Einstein geometry. In Sec-
tion 3 we discuss the integrability of geodesic motions in T 1,1 space and its
metric cone. In Section 4 we extend the study of the integrability for the
resolved conifolds in both existing procedures of smoothing out the sin-
gularity at the apex of the conifold. The paper ends with conclusions in
Section 5.

2. Preliminaries regarding the Sasaki-Einstein geometry

Recall that a (2n−1)-dimensional manifold M is a contact manifold if there
exists a 1-form η, called the contact 1-form, on M such that:

η ∧ (dη)n−1 6= 0 ,

everywhere on M [1]. A contact Riemannian manifold with the metric gM
is Sasakian if its metric cone(

C(M), gC(M)

)
=
(
R+ ×M ,dr2 + r2gM

)
, (1)

is Kähler with the Kähler form

Ω =
1

2
d(r2η) .

Here r ∈ (0,∞) can be regarded as a coordinate on the positive real line
R+.

As a part of the connection between Sasaki and Kähler geometries, it
is worth noting that in the case of a Sasaki-Einstein manifold

RicgM = 2(n− 1)gM ,
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the metric cone is Ricci flat,

RicgC(M)
= 0 ,

i.e. a Calabi-Yau manifold.

3. Complete integrability of T 1,1 space and its metric cone

The metric of the space T 1,1 may be written down explicitly by utilizing
the fact that it is a U(1) bundle over S2×S2. Let us denote by (θ1, φ1) and
(θ2, φ2) the coordinates which parametrize the two sphere in a conventional
way, and the angle ψ ∈ [0, 4π) parametrizes the U(1) fiber. Using these
coordinates the T 1,1 metric may be written as [7, 9]:

ds2T 1,1 =
1

6
(dθ21 + sin2 θ1dφ

2
1 + dθ22 + sin2 θ2dφ

2
2)+

+
1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2 ,

with the globally defined contact 1-form η:

η =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) .

The Hamiltonian describing the geodesic flow is

H =
1

2
gij pipj , (2)

where gij is the inverse metric of T 1,1 space and pi = gij ẋ
j are the con-

jugate momenta to the coordinates (θ1, θ2, φ1, φ2, ψ). Let us denote by
(pθ1 , pθ2 , pφ1 , pφ2 , pψ) these conjugate momenta:

pθ1 =
1

6
θ̇1 ,

pθ2 =
1

6
θ̇2 ,

pφ1 =
1

6
sin2 θ1 φ̇1 +

1

9
cos θ1(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇) ,

pφ2 =
1

6
sin2 θ2 φ̇2 +

1

9
cos θ2(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇) ,

pψ =
1

9
(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇) .

(3)

In terms of them, Hamiltonian (2) has the form:

H =3

[
p2θ1 + p2θ2 +

1

sin2 θ1
(pφ1 − cos θ1 pψ)2 +

1

sin2 θ2
(pφ2 − cos θ2 pψ)2

]
+

9

2
p2ψ .

(4)
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Taking into account the isometries of T 1,1, the momenta pφ1 , pφ2 , pψ are
conserved. On the other hand two total SU(2) angular momenta are also
conserved:

j21 = p2θ1 +
1

sin2 θ1
(pφ1 − cos θ1 pψ)2 + p2ψ ,

j22 = p2θ2 +
1

sin2 θ2
(pφ2 − cos θ2 pψ)2 + p2ψ .

(5)

Other constants of motion can be constructed from the Stäckel-Killing
tensors that are admitted by the T 1,1 space [8]. In spite of the presence of a
multitude of conserved quantities, the number of functionally independent
constants of motion is five, exactly the dimension of the Sasaki-Einstein
space T 1,1 [8, 10]. This implies the complete integrability of geodesic mo-
tions in T 1,1 which allows us to solve the Hamilton-Jacobi equation by
separation of variables and construct the action-angle variables [11].

On the metric cone (1) the geodesic flow is described by the Hamilto-
nian:

HC(T 1,1) =
1

2
p2r +

1

r2
H̃ , (6)

where the radial momentum is

pr = ṙ .

The Hamiltonian H̃ has a similar structure as in (4), but constructed with
momenta p̃i related to momenta pi (3) by

p̃i = r2gij ẋ
j = r2 pi .

It is not difficult to observe that the radial dynamics is independent
of the dynamics of the base manifold T 1,1 and H̃ is a constant of motion.
The Hamilton equations of motion for H̃ on T 1,1 have the standard form
in terms of a new time variable t̃ given by [12]

dt

dt̃
= r2 .

Concerning the constant of motions, they are the conjugate momenta
(p̃φ1 , p̃φ2 , p̃ψ) associated with the cyclic coordinates (φ1, φ2, ψ) and two total
SU(2) momenta

j̃21,2 = r4 j21,2 .

Together with the Hamiltonian HC(T 1,1), they ensure the complete integra-
bility of the geodesic flow on the metric cone.

Considering a particular level set EC(T 1,1) of HC(T 1,1) we get for the
radial motion

p2r = ṙ2 = 2EC(T 1,1) −
2

r2
H̃ .
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The turning point of the radial motion is determined by

ṙ = 0 =⇒ r∗ =

√
H̃

EC(T 1,1)
.

Projecting the geodesic curves onto the base manifold T 1,1 we can evaluate
the total distance transversed in the Sasaki-Einstein space between the
limiting points as t→ −∞ and t→ +∞ [12]

d =
√

2H̃

∫ ∞
−∞

dt

r2∗ + 2EC(T 1,1)t
2

= π .

4. Integrability of the resolved conifolds

The conifold (1) associated with Sasaki-Einstein space T 1,1 can be described
by the quadric

4∑
a=1

w2
a = 0 . (7)

on C4. This equation can be written in terms of a matrix W defined by

W =
1√
2
σawa =

1√
2

(
w3 + iw4 w1 − iw2

w1 + iw2 −w3 + iw4

)
≡
(
X U
V Y

)
,

where σa are the Pauli matrices for a = 1, 2, 3 and σ4 is i times the unit
matrix. The radial coordinate is defined by

r2 = tr (W†W) .

Equation (7) can be written as

detW = 0 , i.e. XY − UV = 0 . (8)

The singularity at the apex can be repaired in two different ways. The
first is achieved by a deformation having the effect of replacing the node by
an S3. The second possibility is represented by a small resolution consisting
in a replacement of the node by an S2.

4.1. Small resolution

The small resolution is obtained replacing equation (8) by the pair of equa-
tions [7]: (

X U
V Y

)(
λ1
λ2

)
= 0 ,

in which (λ1, λ2) ∈ CP1 are not both zero.
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It turns out to be convenient to introduce a new radial coordinate

ρ2 ≡ 3

2
γ ,

where the function γ is given by the equation

γ3 + 6 a2 γ2 − r4 = 0 .

Here a is the “resolution” parameter representing the radius of the sphere
S2 which replaces the singularity at r2 = 0.

Eventually the metric of the resolved conifold can be written simply as
[13]

ds2rc =κ−1(ρ) dρ2 +
1

9
κ(ρ)ρ2(dψ + cos θ1 dφ1 + cos θ2 dφ2)

2

+
1

6
ρ2(dθ21 + sin2 θ1 dφ

2
1) +

1

6
(ρ2 + 6 a2)(dθ22 + sin2 θ2 dφ

2
2) ,

(9)

where

κ(ρ) ≡ ρ2 + 9 a2

ρ2 + 6 a2
.

The resolved conifold metric is Ricci flat and has an explicit SU(2) ×
SU(2) invariant form. When the resolution parameter a goes to zero or
when ρ→∞, the resolved conifold metric reduces to the standard conifold
metric gC(T 1,1). In fact, the parameter a introduces an asymmetry between
the two sphere.

In order to write the Hamiltonian on the resolved conifold, we evalu-
ate the conjugate momenta (Pρ, Pθ1 , Pθ2 , Pφ1 , Pφ2 , Pψ) corresponding to the
coordinates (ρ, θ1, θ2, φ1, φ2, ψ):

Pρ = κ−1(ρ)ρ̇ ,

Pθ1 =
1

6
ρ2θ̇1 ,

Pθ2 =
1

6
(ρ2 + 6 a2)θ̇2 ,

Pφ1 =
1

6
ρ2 sin2 θ1 φ̇1 +

1

9
κ(ρ)ρ2 cos θ1(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇) ,

Pφ2 =
1

6
(ρ2 + 6 a2) sin2 θ2 φ̇2 +

1

9
κ(ρ)ρ2 cos θ2(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇) ,

Pψ =
1

9
κ(ρ)ρ2(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇) .

In terms of them, the Hamiltonian for the geodesic flow on resolved
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conifold (rc) is

Hrc =
κ(ρ)

2
P 2
ρ +

9

2

1

κ(ρ) ρ2
P 2
ψ +

3

ρ2
P 2
θ1 +

3

ρ2 + 6 a2
P 2
θ2

+
3

ρ2 sin2 θ1
(Pφ1 − cos θ1 Pψ)2

+
3

(ρ2 + 6 a2) sin2 θ2
(Pφ2 − cos θ2 Pψ)2 .

(10)

We observe that (φ1, φ2, ψ) are still cyclic coordinates and accordingly,
momenta Pφ1 , Pφ2 , Pψ are conserved. Taking into account the SU(2) ×
SU(2) symmetry of the metric (9), the total angular momenta

J2
1 = P 2

θ1 +
1

sin2 θ1
(Pφ1 − cos θ1 Pψ)2 + P 2

ψ = ρ4 j21 ,

J2
2 = P 2

θ2 +
1

sin2 θ2
(Pφ2 − cos θ2 Pψ)2 + P 2

ψ = (ρ2 + 6a2)2 j22 .

are also conserved. Using these total angular momenta, the Hamiltonian
Hrc can be put in the form:

Hrc =
1

2

ρ2 + 9 a2

ρ2 + 6 a2
P 2
ρ +

3

ρ2
J2
1 +

3

ρ2 + 6 a2
J2
2 −

3(ρ2 + 12 a2)

2(ρ2 + 6 a2)(ρ2 + 9 a2)
P 2
ψ .

(11)
The set of conserved quantities (Hrc, Pφ1 , Pφ2 , Pψ,J

2
1,J

2
2) ensure the

complete integrability of geodesic motions on the resolved conifold. As it
is expected, for a = 0 we recover the state of integrability on the standard
metric cone of the Sasaki-Einstein space T 1,1.

Considering a particular level set Erc of Hrc, we can integrate (11) for
ρ and the turning point ρ∗ is determined by

ρ̇ = κ(ρ)Pρ = 0 .

The explicit expression of the turning point ρ∗ is quite involved and is not
produced here.

4.2. Deformation

The deformation of the conifold consists in replacing the apex by an S3

which is achieved by another modification of equation (7). The deformed
conifold is describe by the equation:

4∑
a=1

w2
a = ε2 ,
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where ε is the “deformation” parameter.
On setting the new radial coordinate

r2 = ε2 cosh τ ,

the deformed conifold (dc) metric is [7, 14]:

ds2dc = Kε
4
3

(
sinh3 τ

3 (sinh 2τ − 2τ)
(dτ2 + ds21) +

cosh τ

4
ds22 +

1

4
ds23

)
, (12)

where

K(τ) =
(sinh 2τ − 2τ)

1
3

2
1
3 sinh τ

,

and

ds21 = (dψ + cos θ1 dφ1 + cos θ2 dφ2)
2 ,

ds22 = dθ21 + dθ22 + sin2 θ1 dφ
2
1 + sin2 θ2 dφ

2
2 ,

ds23 = 2
(
sinψ(dφ1 dθ2 sin θ1 + dφ2 dθ1 sin θ2)

+ cosψ(dθ1 dθ2 − dφ1 dφ2 sin θ1 sin θ2)
)
.

We remark that the metric (12) of the deformed conifold is more in-
volved than in the precedent case. We have only two cyclic coordinates φ1
and φ2 and the number of the first integrals of the corresponding Hamilto-
nian is insufficient to ensure the integrability of the geodesic motions.

5. Conclusions

In the last time it was proved the complete integrability of geodesic motions
on five-dimensional Sasaki-Einstein spaces Y p,q and T 1,1 [8, 10, 15].

The purpose of this paper was to investigate the integrability in the case
of the metric cone of T 1,1 space and its resolved conifolds. We proved that
the geodesics on the Calabi-Yau metric cone are also completely integrable.
This property is also valid for the small resolution of the conifold, but it is
lost in the case of the deformation.

It would be interesting to look for an action-angle formulation of these
completely integrable systems [11, 16]. We mention that in the case of the
geodesic flow on metric cones there are some subtle points having in mind
that the radial motion is unbounded. Moreover it is of interest to study
the integrability in higher dimensional Sasaki-Einstein spaces and their
non-singular resolutions, relevant for the predictions of Ads/CFT corre-
spondence.
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