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Introduction. Thermalization in a quantum system

Thermalization in a quantum system is a major theoretical challenge.
It is involved in many problems of physics (and not only) which involve
initial states which are out of equilibrium:

- Early Universe
- Heavy ion collisions
- Dynamics of cold atomic gas

- etc.



Introduction. Thermalization /equilibration

after quantum quench
A natural setup to study thermalization in closed quantum systems is
quantum quench:

e Quantum system with a Hamiltonian H,

e At time t = 0, the Hamiltonian parameter is changed abruptly
H — H and H'|¢) = E|¢)

o for times t > 0 system evolves with H, and [¢(t)) = e~ H2t|y’).

Let A be a subsystem, with density matrix pa(t) = Trz|e(t)) (1 (t)]
A - complement of A
The system thermalizes, if for any subsystem A it is true that

17 1
Tllnoo ?/0 pa(t)dt = pg = ?e*5H2 for some 3 ;

How do we probe it?
e Entanglement entropy: S(A) = —Tra palog pa - our primary tool

e More "fine-grained” observables: Renyi entropies, correlation
functions of specific operators, .. ..



Quenches in CFT
CFT is a convenient arena to study quench dynamics (Cardy, Calabrese,’05)
e Global quench - excites every point of the circle uniformly in the
initial state - popular setup for studies of thermalization:
V. Balasubramanian et al, arXiv:1012.4753; E. Lopez et al,
arXiv:1006.4090; Liu, Suh - arXiv:1305.7244, etc.

e Local quench: excites a point of the circle in the initial state
e Bilocal quench: excites two antipodal points (AKT: 1706.07390)
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Bilocal quench Glo‘Ea quench

The main goal of our work is to study the non-equilibrium dynamics of
entanglement during thermalization after the bilocal quench in (1 + 1)d
CFT on a cylinder using the holographic duality.



The bulk dual of the bilocal quench

e Local excitations in the boundary
CFT, produce massless particles in the
bulk =
The holographic dual is the AdSs
spacetime with two colliding massless
point particles.

e We are interested in thermalization =

we study the case when the colliding
particles produce a black hole.




The AdS3 spacetime

e a hyperboloid in the 4D flat space: x2 + x2 —x —x3 =1

Parametrize the hyperboloid by global coordinates:
x3 = cosh ycost, xp=coshysint, x;3 =sinhxcos¢, x»=sinhysing
where x € Ry, t € [, 7], ¢ € [0,27]. The metric is
ds? = —cosh?y dt? + dx? + sinh®y d¢?
e SL(2,R) group manifold:

(X3t Xx2 X+ Xx1
X1 —Xpo X3 — X2

), detX =x2+x5 —xt —x3 =1

e solution of vacuum 3D Einstein equations with negative
cosmological constant

Identification isometries: X — X* = u~'Xu; u - holonomy of the defect



Massless particle in AdS;3

Figure: The identification of the massless particle.

The holonomy is: Umassiess = 1+ p*v,,;  (Matschull, gr-qc/9809087)
where

L (10 (01 (01 (10
—\o 1) Yo = -1 0/ M= 1 0/ V2 = 0 —-1/°



BTZ black hole in global AdS;

Figure: The maximally extended BTZ black hole in global coordinates.

—coshp  sinhp

sinhy  —cosh ﬂ>? where ;1 = TR - mass of BH

Holonomy: ugtz = <



Collision of particles in the center of mass frame

SAS:
SHEY



Collision of massless particles in the BTZ rest frame

D.

Figure: Collision of particles in the BTZ rest

frame, Matschull

ds? = —cosh?y dt?+dx?+sinh®y d¢?
Identified surfaces:

Wy @ tany(Ecos¢ tsing) =
—E&sinT, 8:coth%

Vj: .
tanh x sin ¢ = Fsinttanh R



Black hole creation

in BTZ coordinates

To do the holographic computation, we need to map this quotient of
global AdS; to an asymptotically AdS3 spacetime with cylindrical

boundary.

For this, we make transition to BTZ-Schwarzshild coordinates:

Xp = coshysint =

Xp =sinhysing =
x3 = cosh ycost =

x; =sinhxycos¢p =

The metric has the form ds? = —(r?

r>R, o €R, te]0,+00).
What happens to the identification?

—%cosh Ry

%sinhRgp
2
1/%—lsinhR t
r2
ﬁ—lcoshR t

— R?) dt? + % + r2dp?, where



Black hole creation in BTZ coordinates

Figure: Cartoon of black hole creation in BTZ coordinates (A. Jevicki,
J.Thaler, hep-th/0203172). A: particles start from the boundary at t = 0. B:
Particles move through the bulk towards each other. C: Particles
asymptotically approach the horizon.

ds? = —(r2 — R?) di® + 20 + r2dg?
Identified surfaces:

Wy : tanhXS|n¢ = —tanh Ry;

sinT
Vo~V & p~p+27.



Two coordinate systems

A. B.

Figure: A. 3D picture of identification surfaces in global AdSs. B. Creation of
the black hole by colliding particles in BTZ coordinates. Red surfaces are the
faces of identification W.



Holographic entanglement entropy

The entanglement entropy of a subsystem on a spatial subregion A in the
boundary theory is calculated according to the formula

(Ryu, Takayanagi, hep-th/0603001;

Hubeny, Rangamani, Takayanagi (HRT), arXiv:0705.0016):

S(A) = 25 1)

where A is the minimal area of a co-dimension 2 extremal surface in the
bulk which has the same boundary as A and is homologous to A.
AdS;/CFT; case. In d =2 A= [a, b]is a segment of the circle. To
calculate HEE, one has to find the minimal geodesic between equal-time
points a and b on the boundary and calculate its length:

Luin(a, B) e 3

S b) == 2¢



HRT geodesics

Denote
At=t,—ty; to=3(tb+t); DAp=0p—a; @o=35(p+¢a);

e Direct geodesics do not go through identification surfaces W...

e Crossing geodesics go through the identification surfaces W4..



HRT geodesics and equilibration of entanglement

Two patterns of entanglement:

(/) HEE is constant for segments
with ¢a, ¢ € [=7,0), or pa,
©p € [0,71')

(if) HEE grows with time up to thermal
value for blue segments with
Pa € [_7T70)' and ¥p € [0771-):

. N /\g/ Denote AQO — Ob — ar D0 = %(@a + Sob)-
RN 4




Holographic entanglement entropy: results

o Static thermal equilibrium regime: direct geodesic dominates.

Seq(a, b) = %Iog (i sinh (RAS'O)) ;

This is thermal HEE.

e Dynamic non-equilibrium regime: crossing geodesic dominates.

6
+&2 cosh 2Ry + €2 cosh 2Rt — 2€ sinh RAp+

2
Snoneq(a, blt) = S log { (=1 + &%+ (1 + &%) cosh RAp+
€

A A
+4€& cosh Rt cosh Ry (sinh RT('D — € cosh R;))} .

— 0 Ay
For wg = 0: symmetry between t and 5~



Evolution of entanglement entropy

.
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Figure: Here red curve is the function AS(t) = Snon-eq(t) — Seq, green dashed
curve is the quadratic approximation, and blue dashed line is the linear
asymptotic. Main feature - sharp transition to saturation.



Evolution of entanglement entropy [’ global heating up”]

AS

-2
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Figure: Here AS(t) = Snon-eq(t) — Seq, blue: zy = 00,z = 1; green
zH =2.5,zh =1; red zH = 1.3,zh = 1. Top curves correspond to £ = 7 and
bottom ones to ¢ = 3.5. Main feature - smooth transition to saturation.

Liu, Suh - arXiv:1305.7244, I.A., Ageev, 1701.07280



Time scales of entanglement equilibration

e "Pre-local equilibration time” t = t; = %
(H.Liu, S.Suh,1305.7244; |.A., D.Ageev, 1704.07747, in the global

quench context )

e Crossing the apparent horizon: t = t,

e Thermalization time t = tﬁa’b) - HEE saturates
cosh R t£a’b) = cosh Ryo (cosh R% — % sinh R%)

A 1 Ap\? A 1
+\/cosh2 Reo (cosh RT“’ ~ 5 sinh R%) — cosh? Ry — sinh? RTSD + 5 sinh RAg

Unlike the global quench case, we have sharp transition to saturation



Evolution of entanglement entropy

. Early-time quadratic growth: t < t;
Snon-eq(a, bIt) = Soneq(a, bl0) + F(pa, pp) 1+ O(t);

. Intermediate regime: t; <t < tp. Interpolation between quadratic
and linear growth

. Linear growth: t, <t < t,

c c coth Z8
AS(t) = Snon-eq — Seq = s R t + - log (22A> +0(e™R).
3 3 8sinh” RS2

. Saturation: t > t,. HEE is at thermal value.



Universality of entanglement growth

as memory loss
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Figure: A: A: The shell in the BH background; B: A(t,¢)S;C: The holographic
entanglement entropy S(t, ¢) as function on t for given ¢; D: 5(t,¢) as
function on ¢ for given t.



Memory loss and entanglement tsunami [bilocal quench]

P
o o m = B.

Figure: A: Entanglement spreading in case of symmetric intervals. The
horizontal plateau represents the equilibrium regime. B: Density plot of
non-equilibrium HEE as a function of ¢ = % and U =t — ¢, with R =5.

Tsunami=wave character=S5(¢,t) = S({ — t)
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Memory loss and entanglement tsunami [global heating up]

A.

Figure: 3D plot for AS(t,£) for the global heating up.



Linear growth and black hole interior
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Bound on size of segments which probe the interior:
%‘E > (hor = 55 arcsinh tanh %R



Evolution of mutual information (bilocal quench)
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Evolution of mutual information (global quench)

Tnax 2 =4,2, =25 =42, =12
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Figure: Different regimes of the MI evolution in the heating process of two
disjoint intervals.

I(A,B) = S(A) + S(B) — S(AU B)



Evolution of MI for composite systems (global quench)

5 types of Ml time dependence

A B B, B A B,

MI?T?T? TT—T?
T 1 2 3 . F=es 10 15

IA, O.Inozemchev, |.Volovich



Conclusions

Non-trivial non-equilibrium dynamics are shown by susbsystems
which contain one of the excitations.
Explicit formula for non-equilibrium HEE.
Many similarities with global quench = more evidence for
universality of entanglement growth
Significant difference from the global quench:

e sharp transition

e ¢ < — >t symmetry
Linear growth, loss of memory about the initial state and black hole
interior are intimately connected:
Linear growth of entanglement is a diagnostic of the information loss
in the bulk
Mutual information:

e many possibilities;
e "Bell"-type ("breather”) in the temporal behavior.



Open questions

CFT computation of HEE and correlation functions

Corrections to the holographic limit (memory/information
restoration?)

Higher-dimensional generalizations

Generalization to the n-local case (collision of n particles in the bulk)



Backup slides



Geodesic approximation for two-point boundary correlators

We are interested in the two-point correlation function of light* scalar
operator (Oa(a)Oa(b)). Consider the propagator for bulk field  on
asymptotically AdS space in the worldline representation:

X(1)=b _ _
G(a, b) = / DX(N) e Jo AV g X1XY m? = A(A — d)

X(0)=a
Steepest descent expansion (m ~ A >0 ):
G(a,b) ~ Y e ALED) (2)
Extrapolate the bulk field to the boundary: O = lim._,oe 2 —

Geodesic approximation for boundary correlators
(Balasubramanian, Ross, 2000):

(0a(a)0a(b)) = Ze—ALren(a,b)



Geodesic image method

In our case there are multiple geodesics connecting two boundary points,
so we have to sum over them

<OA Z e~ Lren a b) Z Z a, b*n)A A,Cren(a b* ")

Sum includes direct geodesic and geodesics which wind around defects.
The latter ones can be accounted for using image geodesics from point a
to images of b w.r.t. identification isometry: i. e. xp- = u~!x,u.

(D. Ageev, I. Aref'eva, M. K., M. Tikhanovskaya: 1512.03362,

1512.03363, 1604.08905)
o Consider image geodesics: L(a, b*), L(a, b**), ..., L(a, b*")
e Length of a winding geodesic equals to the length of an image
geodesic

e The renormalization scheme takes into account invariance with
respect to identification .

e Applicability of semiclassical expansion: p(e) > A >0

e The prescription is continued to the Lorentzian signature using the
reflection mapping according to recipe in 1604.08905



Applicability of the geodesic prescription

The background metric must have a well-defined Euclidean analytic
continuation

In the Lorentzian signature the prescription is viable only for
spacelike-separated points on the boundary

0 <« A < . (Steepest descent and no backreaction)

In general, one has to sum over all geodesics between two given
boundary points

In the general case, there is a non-perturbative contribution to the
full propagator. It vanishes in the case where AdS is an orbifold
(I. Aref’eva, M. K., arXiv:1601.02008)

The renormalization scheme must be tailored for every specific
deformation of AdS spacetime



