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Introduction. Thermalization in a quantum system

Thermalization in a quantum system is a major theoretical challenge.
It is involved in many problems of physics (and not only) which involve
initial states which are out of equilibrium:

- Early Universe

- Heavy ion collisions

- Dynamics of cold atomic gas

- etc.



Introduction. Thermalization/equilibration
after quantum quench

A natural setup to study thermalization in closed quantum systems is
quantum quench:

• Quantum system with a Hamiltonian H;

• At time t = 0, the Hamiltonian parameter is changed abruptly
H → H ′ and H ′|ψ′〉 = E |ψ′〉

• for times t > 0 system evolves with H, and |ψ(t)〉 = e−iH2t |ψ′〉.
Let A be a subsystem, with density matrix ρA(t) = TrĀ|ψ(t)〉〈ψ(t)|

Ā - complement of A
The system thermalizes, if for any subsystem A it is true that

lim
T→∞

1

T

∫ T

0

ρA(t)dt = ρβ =
1

Z
e−βH2 for some β ;

How do we probe it?

• Entanglement entropy: S(A) = −TrA ρA log ρA - our primary tool

• More ”fine-grained” observables: Renyi entropies, correlation
functions of specific operators, . . . .



Quenches in CFT
CFT is a convenient arena to study quench dynamics (Cardy, Calabrese,’05)

• Global quench - excites every point of the circle uniformly in the
initial state - popular setup for studies of thermalization:
V. Balasubramanian et al, arXiv:1012.4753; E. Lopez et al,

arXiv:1006.4090; Liu, Suh - arXiv:1305.7244, etc.

• Local quench: excites a point of the circle in the initial state
• Bilocal quench: excites two antipodal points (AKT: 1706.07390)

Bilocal quench Global quench

The main goal of our work is to study the non-equilibrium dynamics of
entanglement during thermalization after the bilocal quench in (1 + 1)d
CFT on a cylinder using the holographic duality.



The bulk dual of the bilocal quench

• Local excitations in the boundary
CFT2 produce massless particles in the
bulk ⇒
The holographic dual is the AdS3

spacetime with two colliding massless
point particles.

• We are interested in thermalization ⇒
we study the case when the colliding
particles produce a black hole.



The AdS3 spacetime

• a hyperboloid in the 4D flat space: x2
0 + x2

3 − x2
1 − x2

2 = 1
Parametrize the hyperboloid by global coordinates:

x3 = coshχ cos t, x0 = coshχ sin t, x1 = sinhχ cosφ, x2 = sinhχ sinφ

where χ ∈ R+, t ∈ [−π, π], φ ∈ [0, 2π]. The metric is

ds2 = −cosh2χ dt2 + dχ2 + sinh2χ dφ2

• SL(2,R) group manifold:

X =

(
x3 + x2 x0 + x1

x1 − x0 x3 − x2

)
, detX = x2

0 + x2
3 − x2

1 − x2
2 = 1

• solution of vacuum 3D Einstein equations with negative
cosmological constant

Identification isometries: X → X ∗ = u−1Xu; u - holonomy of the defect



Massless particle in AdS3

A. B.

Figure: The identification of the massless particle.

The holonomy is: umassless = 1 + pµγµ ; (Matschull, gr-qc/9809087)
where

1 =

(
1 0
0 1

)
, γ0 =

(
0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
, γ2 =

(
1 0
0 −1

)
,



BTZ black hole in global AdS3

A B

Figure: The maximally extended BTZ black hole in global coordinates.

Holonomy: uBTZ =

(
− coshµ sinhµ

sinhµ − coshµ

)
; where µ = πR - mass of BH



Collision of particles in the center of mass frame

A. B.

C. D.



Collision of massless particles in the BTZ rest frame

A. B.

C. D.

Figure: Collision of particles in the BTZ rest
frame, Matschull

ds2 = −cosh2χ dt2+dχ2+sinh2χ dφ2

Identified surfaces:

W± : tanχ(E cosφ± sinφ) =
−E sin τ , E = coth Rπ

2

V± :

tanhχ sinφ = ∓ sin t tanhπR



Black hole creation in BTZ coordinates

To do the holographic computation, we need to map this quotient of
global AdS3 to an asymptotically AdS3 spacetime with cylindrical
boundary.
For this, we make transition to BTZ-Schwarzshild coordinates:

x0 = coshχ sin τ = − r

R
coshR ϕ

x2 = sinhχ sinφ =
r

R
sinhR ϕ

x3 = coshχ cos τ =

√
r2

R2
− 1 sinhR t

x1 = sinhχ cosφ =

√
r2

R2
− 1 coshR t

The metric has the form ds2 = −(r2 − R2) dt2 + dr2

r2−R2 + r2dϕ2 , where
r > R, ϕ ∈ R, t ∈ [0,+∞).
What happens to the identification?



Black hole creation in BTZ coordinates

A. B. C.

Figure: Cartoon of black hole creation in BTZ coordinates (A. Jevicki,
J.Thaler, hep-th/0203172). A: particles start from the boundary at t = 0. B:
Particles move through the bulk towards each other. C: Particles
asymptotically approach the horizon.

ds2 = −(r2 − R2) dt2 + dr2

r2−R2 + r2dϕ2 ,
Identified surfaces:

W± : tanhχ
sinφ

sin τ
= − tanhRϕ ;

V− ∼ V+ ⇔ ϕ ∼ ϕ+ 2π .



Two coordinate systems

A. B.

Figure: A. 3D picture of identification surfaces in global AdS3. B. Creation of
the black hole by colliding particles in BTZ coordinates. Red surfaces are the
faces of identification W±.



Holographic entanglement entropy

The entanglement entropy of a subsystem on a spatial subregion A in the
boundary theory is calculated according to the formula
(Ryu, Takayanagi, hep-th/0603001;
Hubeny, Rangamani, Takayanagi (HRT), arXiv:0705.0016):

S(A) =
A

4G
; (1)

where A is the minimal area of a co-dimension 2 extremal surface in the
bulk which has the same boundary as A and is homologous to A.
AdS3/CFT2 case. In d = 2 A = [a, b] is a segment of the circle. To
calculate HEE, one has to find the minimal geodesic between equal-time
points a and b on the boundary and calculate its length:

S(a, b) =
Lmin(a, b)

4G
; whereG =

3

2c
.



HRT geodesics

Denote
∆t = tb − ta ; t0 = 1

2 (tb + ta) ; ∆ϕ = ϕb − ϕa ; ϕ0 = 1
2 (ϕb + ϕa) ;

• Direct geodesics do not go through identification surfaces W±.

• Crossing geodesics go through the identification surfaces W±.



HRT geodesics and equilibration of entanglement

Two patterns of entanglement:

(i) HEE is constant for orange segments
with ϕa, ϕb ∈ [−π, 0), or ϕa,
ϕb ∈ [0, π)

(ii) HEE grows with time up to thermal
value for blue segments with
ϕa ∈ [−π, 0), and ϕb ∈ [0, π):

Denote ∆ϕ = ϕb − ϕa, ϕ0 = 1
2 (ϕa + ϕb).



Holographic entanglement entropy: results

• Static thermal equilibrium regime: direct geodesic dominates.

Seq(a, b) =
c

3
log

(
2

ε
sinh

(
R

∆ϕ

2

))
;

This is thermal HEE.

• Dynamic non-equilibrium regime: crossing geodesic dominates.

Snon-eq(a, b|t) =
c

6
log

[
2

ε

(
−1 + E2 + (1 + E2) coshR∆ϕ+

+E2 cosh 2Rϕ0 + E2 cosh 2Rt − 2E sinhR∆ϕ+

+4E coshRt coshRϕ0

(
sinhR

∆ϕ

2
− E coshR

∆ϕ

2

))]
.

For ϕ0 = 0: symmetry between t and ∆ϕ
2



Evolution of entanglement entropy

SaturationLinear growthIntermediateregimeQuadratic growth
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Figure: Here red curve is the function ∆S(t) = Snon-eq(t)− Seq, green dashed
curve is the quadratic approximation, and blue dashed line is the linear
asymptotic. Main feature - sharp transition to saturation.



Evolution of entanglement entropy [”global heating up”]

1 2 3 4 5 6 7 t

-4

-3

-2

-1

ΔS

Figure: Here ∆S(t) = Snon-eq(t)− Seq, blue: zH =∞, zh = 1; green
zH = 2.5, zh = 1; red zH = 1.3, zh = 1. Top curves correspond to ` = 7 and
bottom ones to ` = 3.5. Main feature - smooth transition to saturation.

Liu, Suh - arXiv:1305.7244, I.A., Ageev, 1701.07280



Time scales of entanglement equilibration

• ”Pre-local equilibration time” t = t1 = ∆ϕ
2R

(H.Liu, S.Suh,1305.7244; I.A., D.Ageev, 1704.07747, in the global
quench context )

• Crossing the apparent horizon: t = t2

• Thermalization time t = t
(a,b)
∗ - HEE saturates

coshR t
(a,b)
∗ = coshRϕ0

(
coshR

∆ϕ

2
− 1

E
sinhR

∆ϕ

2

)

+

√
cosh2 Rϕ0

(
coshR

∆ϕ

2
− 1

E
sinhR

∆ϕ

2

)2

− cosh2 Rϕ0 − sinh2 R
∆ϕ

2
+

1

E
sinhR∆ϕ

Unlike the global quench case, we have sharp transition to saturation



Evolution of entanglement entropy

1. Early-time quadratic growth: t < t1

Snon-eq(a, b|t) = Snon-eq(a, b|0) + f (ϕa, ϕb) t2 + O(t4) ;

2. Intermediate regime: t1 ≤ t < t2. Interpolation between quadratic
and linear growth

3. Linear growth: t2 ≤ t < t∗

∆S(t) = Snon-eq − Seq =
c

3
R t +

c

3
log

(
coth πR

2

8 sinh2 R ∆ϕ
2

)
+ O(e−Rt) .

4. Saturation: t ≥ t∗. HEE is at thermal value.



Universality of entanglement growth

Geodesics in Vaidya-AdS 

A B
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ℓ
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D.

Figure: A: A: The shell in the BH background; B: ∆(t, `)S ;C: The holographic
entanglement entropy S(t, `) as function on t for given `; D: S(t, `) as
function on ` for given t.



Memory loss and entanglement tsunami [bilocal quench]

A. 0.0 0.5 1.0 1.5

- 1.5

- 1.0

- 0.5

0.0

B.

Figure: A: Entanglement spreading in case of symmetric intervals. The
horizontal plateau represents the equilibrium regime. B: Density plot of
non-equilibrium HEE as a function of ϕ = ∆ϕ

2
and U = t − ϕ, with R = 5.

Tsunami=wave character=S(`, t) = S(`− t)



Memory loss and entanglement tsunami [global heating up]

A.

Figure: 3D plot for ∆S(t, `) for the global heating up.



Linear growth and black hole interior

Δϕ
2
=0.1

Δϕ
2
=thor(R)~0.147

Δϕ
2
=0.3

Δϕ
2
=0.6

0.1 0.2 0.3 0.4 0.5 0.6
t

- 4

- 3

- 2

- 1

0

ΔS

Bound on size of segments which probe the interior:
∆ϕ

2 ≥ ϕhor = 1
2R arcsinh tanh πR

2



Evolution of mutual information (bilocal quench)
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C.

I (A,B) = S(A) + S(B)− S(A ∪ B)



Evolution of mutual information (global quench)

t is defined as

I(`1, `2, x, t) = S(`1, t) + S(`2, t) � (S(`1 + `2 + x, t) + S(x, t)) . (3.1)

The behaviour of the mutual information thermalization has been investigated

in many previous studies [28, 29], where the AdS-Vaidya model has been considered.

We study the general features of the mutual information behaviour in the BH-Vaidya

model, i.e. when the initial state is already thermal. A quantum quench in the

quantum theory starting from a thermal initial state has been studied in [32].

We are looking for a very special mutual information evolution, namely the evo-

lution that has the form of the bell. As has been noted in [9], this type of behaviour

of the holographical mutual information reproduces results of numerical calculations

for a special non-equilibrium open quantum system describing the photosynthesis

[34].

1 2 3 4 5

0.2

0.4

0.6

0.8

t

Imax

Istart

Imin

Imax,bell

Imax,scr

Istart,scr

twup

I

tscr, bell tscr

Figure 1. Di↵erent regimes of the mutual information evolution in the heating process of

two disjoint intervals. The blue curve starts from a non-zero value of the mutual information

Istart 6= 0, then increases and reaches the maximum Imax, and then starts to decrease up

to a fixed value Imin 6= 0. The brown curve corresponds to the scrambling behaviour,

I(tstart,scr) 6= 0, I(tscr) = 0. The orange curve corresponds to the bell regime, I(twup) =

I(tscr, bell) = 0, twup < tscr, bell. The yellow line corresponds to mutual information vanishing

during all process.

There are four di↵erent regimes of the mutual information time evolution during

the heating process of two segments:

• the regime where the mutual information starts from a non-zero value, then

increases and reaches the maximum Imax. After that it starts to decrease up

to a fixed positive value Imin 6= 0 (the blue line in Fig.1 shows this type of the

time evolution of the mutual information);

• the regime with a scrambling point, i.e. the regime, where at the time tscr the

mutual information vanishes (the brown line in Fig.1);

– 7 –

and at large ` this curve approaches from the left to the vertical line

x !
`!1

xscr = zh ln 2 , (3.4)

At 0 < t << theat the temperature of the system is defined by zH and the

line separating the region of the bell shape mutual information from the scrambling

regime is given by formula (3.2) with zH instead of zh, and therefore at large `

xwup = zH ln 2 , (3.5)

see Fig.3, where the general structure of scrambling and bell regions is presented.

xscrxscr xscr

zH = 4, zh = 2.5 zH = 4, zh = 1.2 zH = 4, zh = 1

0.5 1.0 1.5 2.0
0

1

2
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4
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0.5 1.0 1.5 2.0
0
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2

3

4
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xscr xwup

zH = 1.2, zh = 1.1 zH = 1.2, zh = 1 zH = 1.2, zh = 0.9

Figure 3. Zones of di↵erent regimes of the mutual information behaviour for di↵erent `

and separation x. The vertical axes correspond to ` and the horizontal axes to x. The

black solid line corresponds to the critical value of xscr = zh log 2, where the scrambling

occurs and the dashed one corresponds to critical value of xwup = zh log 2. The di↵erent

colors correspond to the di↵erent regimes presented in Fig.1. In the up plots zH = 4 and

zh = 2.5, 1.2, 1 (from the left to the right), in the bottom plots zH = 1.2 and zh = 1.1, 1, 0.9

(from the left to the right)

3.2 Configurations with the bell-type mutual information evolution

In this section we study in more details the region of parameters `, x, where the

bell-type of the time evolution of the mutual information during the heating process

– 9 –

Figure: Different regimes of the MI evolution in the heating process of two
disjoint intervals.

I (A,B) = S(A) + S(B)− S(A ∪ B)



Evolution of MI for composite systems (global quench)

4.2 Holographic Mutual Information for one-segment-two-segments sys-
tem

4.2.1 Case I

In this case A is a segment with length `, B is an union of two segments with lengths
m, n and distance y between them. Distance between A and B equals to x (Fig.8).

A B1 B2

ℓ x � y �

Figure 8. Case I.

We have found the following holographic mutual information (HMI) behavior
(Fig.9):

1. No wake-up time and no scrambling time, HMI > 0 (blue curve);

2. No wake-up time but scrambling time (orange curve);

3. Wake-up time and scrambling time, i.e. bell shape (green curve);

4. Wake-up time and scrambling time, i.e. two-humped form (red curve);

5. Mutual information equals to zero, HMI ⌘ 0 (purple curve).

Figure 9. Five types of mutual information behavior for the system of three segments.

The left plot in 10 shows the emergence of a "double hump" for HMI. Let two
segments A, B2 be given, and the the plot for HMI has the form of a bell. We draw the
segment B1 from the left to this system. Then a double hump emerges at a certain
distance, with the right side of the hump growing as the segment B1 approaches to
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Figure 9. Five types of mutual information behavior for the system of three segments.

The left plot in 10 shows the emergence of a "double hump" for HMI. Let two
segments A, B2 be given, and the the plot for HMI has the form of a bell. We draw the
segment B1 from the left to this system. Then a double hump emerges at a certain
distance, with the right side of the hump growing as the segment B1 approaches to

– 11 –

Figure 10. The emergence of a "double hump" for the HMI for system of the type I

Figure 11. Zones of different behavior for two segments. Horizontal axis corresponds to
x, vertical axis corresponds to m1. zH = 4.46, ` = 1.77 and x, m1 are varied.

the system. In the right plot in Fig.10, the situation is similar, only the distances
between the segments are fixed, and we change the length of the segment B1.

In Fig.11 we show the zone structure of HMI for two segments. Horizontal axis
corresponds to x, vertical axis corresponds to m1. We see that the existence of zone
of the "double hump" for HMI requires a fine turning.

4.2.2 Case II

A is a segment with length `, B is an union of two segments with lengths m, n and
distance x + ` + y between them (Fig.12).

B1 A B2

� x ℓ y �

Figure 12. Case II.

In this case there is generally the same HMI behavior (Fig.13):

1. No wake-up time and no scrambling time, HMI > 0 (purple curve);

2. No wake-up time but scrambling time (red curve);

3. Wake-up time and scrambling time, i.e. bell shape (green curve);

– 12 –

4. Wake-up time and scrambling time, i.e. two-humped form (orange curve);

5. Mutual information equals to zero, HMI ⌘ 0 (blue curve).

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t
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0.6

0.8

1.0

HMI

Figure 13. Five types of mutual information behavior for the system of type II for three
segments.

In the left plot of Fig.14 we show the emergence of a "double hump" for HMI.
Let two segments A and B2 be given, and the HMI chart has the form of a bell. We
will draw the segment B1 from the left to this system. Then a double hump emerges
at a certain distance, with the right side of the hump growing as the segment B1

approaches to the rest of the system. In the right plot of Fig.14, we see the similar
the behaviour, only the distances between the segments is fixed, and we change the
length of the segment B1.

4.2.3 Comparison of case I and symmetric case II

It is instructive to compare the HMI for system of 3 segments with a different or-
ganization in type I and type II system. Form the beginning we can expect that
when we penetrate into the system of two segment with the help of the third one,

Figure 14. the emergence of a "double hump" for HMI for system of the type II

– 13 –

5	types	of	MI	2me	dependence	

IA, O.Inozemchev, I.Volovich



Conclusions

• Non-trivial non-equilibrium dynamics are shown by susbsystems
which contain one of the excitations.

• Explicit formula for non-equilibrium HEE.

• Many similarities with global quench ⇒ more evidence for
universality of entanglement growth

• Significant difference from the global quench:
• sharp transition
• φ < − > t symmetry

• Linear growth, loss of memory about the initial state and black hole
interior are intimately connected:
Linear growth of entanglement is a diagnostic of the information loss
in the bulk

• Mutual information:
• many possibilities;
• ”Bell”-type (”breather”) in the temporal behavior.



Open questions

• CFT computation of HEE and correlation functions

• Corrections to the holographic limit (memory/information
restoration?)

• Higher-dimensional generalizations

• Generalization to the n-local case (collision of n particles in the bulk)



Backup slides



Geodesic approximation for two-point boundary correlators

We are interested in the two-point correlation function of light* scalar
operator 〈O∆(a)O∆(b)〉. Consider the propagator for bulk field Φ on
asymptotically AdS space in the worldline representation:

G (a, b) =

∫ X (1)=b

X (0)=a

DX (λ) eim
∫ 1

0
dλ
√
−gµν ẊµẊν

, m2 = ∆(∆− d)

Steepest descent expansion (m ∼ ∆� 0 ):

G (a, b) ∼
∑

e−∆L(a,b) (2)

Extrapolate the bulk field to the boundary: O∆ = limε→0 ε
−∆Φ →

Geodesic approximation for boundary correlators
(Balasubramanian, Ross, 2000):

〈O∆(a)O∆(b)〉 =
∑

e−∆Lren(a,b)



Geodesic image method
In our case there are multiple geodesics connecting two boundary points,
so we have to sum over them

〈O∆(a)O∆(b)〉 =
∑

e−∆Lren(a,b) =
∑
n

Zn(a, b∗n)∆e−∆Lren(a,b∗n)

Sum includes direct geodesic and geodesics which wind around defects.
The latter ones can be accounted for using image geodesics from point a
to images of b w.r.t. identification isometry: i. e. xb∗ = u−1xbu.
(D. Ageev, I. Aref’eva, M. K., M. Tikhanovskaya: 1512.03362,
1512.03363, 1604.08905)

• Consider image geodesics: L(a, b∗), L(a, b∗∗), . . . , L(a, b∗n)

• Length of a winding geodesic equals to the length of an image
geodesic

• The renormalization scheme takes into account invariance with
respect to identification ∗.

• Applicability of semiclassical expansion: µ(ε)� ∆� 0

• The prescription is continued to the Lorentzian signature using the
reflection mapping according to recipe in 1604.08905



Applicability of the geodesic prescription

• The background metric must have a well-defined Euclidean analytic
continuation

• In the Lorentzian signature the prescription is viable only for
spacelike-separated points on the boundary

• 0� ∆� µ. (Steepest descent and no backreaction)

• In general, one has to sum over all geodesics between two given
boundary points

• In the general case, there is a non-perturbative contribution to the
full propagator. It vanishes in the case where AdS is an orbifold
(I. Aref’eva, M. K., arXiv:1601.02008)

• The renormalization scheme must be tailored for every specific
deformation of AdS spacetime


