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Nonlocal Modified Gravity

Our action is given by

S = 1
16πG

∫ (
R − 2Λ + RpF(�)Rq

)√
−gd4x

where � = 1√
−g ∂µ

√
−ggµν∂ν , F(�) =

∞∑
n=0

fn�
n.

We use Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)
(

dr2

1−kr2 + r2dθ2 + r2 sin2 θdφ2
)
, k ∈ {−1, 0, 1}.
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Equations of motion

Equation of motion are

− 1

2
gµνR

pF(�)Rq + RµνW − KµνW +
1

2
Ωµν = −(Gµν + Λgµν),

Ωµν =
∞∑
n=1

fn

n−1∑
l=0

(
gµν∇α�lRp∇α�n−1−lRq

− 2∇µ�lRp∇ν�n−1−lRq + gµν�
lRp�n−lRq

)
,

Kµν = ∇µ∇ν − gµν�,

W = pRp−1F(�)Rq + qRq−1F(�)Rp.
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Trace and 00-equations

In case of FRW metric there are two linearly independent equations.
The most convenient choice is trace and 00 equations:

− 2RpF(�)Rq + RW + 3�W +
1

2
Ω = R − 4Λ,

1

2
RpF(�)Rq + R00W − K00W +

1

2
Ω00 = Λ− G00,

Ω = gµνΩµν .
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Cosmological solutions with constant scalar
curvature

Let R = R0 = const and we obtain

6
(

ä
a +

(
ȧ
a

)2
+ k

a2

)
= R0.

Change of variable b(t) = a2(t) implies

3b̈ − R0b = −6k .

Depending on the sign of the scalar curvature R0 we obtain the
following solutions for b(t)

R0 > 0 b(t) = 6k
R0

+ σe

√
R0
3 t + τe−

√
R0
3 t

R0 = 0 b(t) = −k2t + σt + τ

R0 < 0 b(t) = 6k
R0

+ σ cos
√
−R0

3 t + τ sin
√
−R0

3 t
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Cosmological solutions with constant scalar
curvature

Since R = R0 = const trace and 00 equations are simplified to

f0R
p+q−1
0 (p + q − 2) = R0 − 4Λ,

f0R
p+q−1
0 (

1

2
R0 + (p + q)R00) = Λ− G00.

The system has a solution iff

Rp+q−1
0 (R0 + 4R00)(R0 + (2Λ− R0)(p + q)) = 0.

note that R00 is expressed in terms of b(t) as

R00 = − 3ä
a = 3((ḃ)2−2bb̈)

4b2 .
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Cosmological solutions with constant scalar
curvature

In the first case, condition R0 + 4R00 = 0 yields restrictions on values
of parameters σ and τ :

R0 > 0 9k2 = R2
0στ,

R0 = 0 σ2 + 4kτ = 0,

R0 < 0 36k2 = R2
0 (σ2 + τ 2).
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Case 1: R0 < 0

Let k = −1, define ϕ by σ = −6
R0

cosϕ and τ = −6
R0

sinϕ, then a(t)
and b(t) simplifies to

b(t) =
−12

R0
cos2 1

2
(

√
−R0

3
t − ϕ),

a(t) =

√
−12

R0
| cos

1

2
(

√
−R0

3
t − ϕ)|.

Let k = +1 b(t) is transformed into

b(t) = 12
R0

sin2 1
2 (
√
−R0

3 t − ϕ),

which is nonpositive, and there is no solutions.
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Case 2: R0 = 0

Let k = 0 then functions a(t) are b(t) constant and we get
Minkowski spacetime.

Let k = ±1, then b(t) takes the form

b(t) = −k(t − σ
2k )2.

Therefore, if k = 1 there is no solutions, and if k = −1 we have
a(t) = |t + σ

2 |.
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Case 3: R0 > 0

If k = 0 we obtain a solution with constant Hubble parameter.
Moreover, if k = +1 we choose ϕ such that σ + τ = 6

R0
coshϕ and

σ − τ = 6
R0

sinhϕ. Then

b(t) =
12

R0
cosh2 1

2
(

√
R0

3
t + ϕ),

a(t) =

√
12

R0
cosh

1

2
(

√
R0

3
t + ϕ).

In the last possibility k = −1, b(t) takes the form

b(t) =
12

R0
sinh2 1

2
(

√
R0

3
t + ϕ),

a(t) =

√
12

R0
| sinh

1

2
(

√
R0

3
t + ϕ)|.
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Case 4: Rp+q−1
0 (R0 + (2Λ− R0)(p + q)) = 0

If p + q ≥ 1 then the only solution is R0 = 0.
If p + q = 0 there is no solutions.

If p + q 6= 0, 1 then R0 = 2Λ(p+q)
p+q−1 .
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Perturbations

Let us consider the case k = 0, a(t) = eλt .
We introduce the conformal time dτ = a(t)dt, and then a(τ) = − 1

λτ .

ds2 = a2(η)
(
− dη2 + dx2 + dy2 + dz2)



Cosmological
perturbations in
nonlocal gravity

Ivan Dimitrijevic

Perturbations

We take the scalar perturbations of the metric in the form
ĝµν = gµν + hµν

hµν = a(η)2

(
−2φ −(∇B)T

−∇B −2ψId + 2 HessE

)
φ, ψ, B and E depend on η, x , y , z .

gauge transformation can make any two of those functions
vanish.

gauge invariant variables (Bardeen potentials)

Φ = φ− a′

a (B + E ′)− (B ′ + E ′′), Ψ = ψ + a′

a (B + E ′),

Perturbation of the scalar curvature takes the form

R̂ = R + δR,

δR = −Rµνhµν + (∇µ∇ν − gµν�)hµν ,
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Perturbations

Perturbations of the equations of motion up to linear order take form

−m2δGµν + (Rµν − Kµ
ν )v(�)δR = 0,

where m2 = 2 + 2f0(G′H+H′G) i
v(�) = −2(G′′H+H′′G)f0 + 2G′H′F(�).

Trace of the pervious equation is

[m2 + (R + 3�)v(�)]δR = U(�)δR = 0.

To solve the trace equation we use Weierstrass factorization theorem

U(�)δR =
∏
i

(�− ω2
i )eγ(�)δR = 0,

where ω2
i are the roots of the equation U(ω2) = 0 and γ(�) is entire

function. Moreover, we assume that there is no multiple roots.
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Perturbations

Roots ω2
i are obtained as solutions of the eigenvalue problem

(�− ω2
i )δR = 0.

Eigenfunctions that correspond to eigenvalue ω2
i are denoted δRi .

General solution for δR is the sum over all values of ω2
i ie.

δR =
∑

i δRi .
Eigenfunctions take the form

δRi = (−kτ)3/2 (C1iJνi (−kτ) + C2iYνi (−kτ)) ,

where J, Y are Bessel functions of the first and second kind

resectively and νi =

√
9
4 −

ω2
i

H2 .
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Bardeen potentials

Bardeen potentials are derived from the following equations

−m2(Φ−Ψ) + v(�)δR = 0,

δR + (R + 3�)(Φ−Ψ) = 0.

Then Bardeen potentials take the form

Φ + Ψ = η(c1(cos(η) + η sin(η)) + c2(−η cos(η) + sin(η))) ,

Φ−Ψ =
1

m2

∑
i

v(ω2
i )δRi ,

where η = kτ√
3

.
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Perturbations

Asymptotic behavior of the Bessel function implies that Bardeen
potentials are bounded if

<ν < 3

2
.

R − 4Λ + f0R
p+q(2− p − q) = 0.

This polynomial equation can be explicitly solved for R if
−3 ≤ p + q ≤ 4. Necessary condition for the solution to be stable is

1 + Rp+q−1(p + q)(2− p − q)f0 < 0.

Note that if p + q = 0 or p + q = 2 there is no stable solutions.
When p + q = 1 the stable solution might exist if Λ < 0 and f0 < 0.
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Perturbations

Pervious two conditions are reformulated

1− s + u = 0, 1 + uz < 0,

where s = 4Λ
R , z = p + q, u = f0R

z−1(2− z). This system is very
simple, but does not have clear physical interpretation.
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Thank you for your attention!


