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INTRODUCTION:



Canonical gravity

3-dimensional manifold: X

3-metric and momentum: g, p*°, a,b=1,2.3

The Poisson bracket:  {qu(x),p"%(y)} = (Caégl)(S(:v,y)

. 1 1
The constraints: C := — [ p*®pp — = (p%,)? | — —
ﬁ(p Pab — 5 (9 >> VaR =0

Cq = _QQacDbpr =0

Hamiltonian: H = / d>x (NC + N*C,)
>
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Canonical gravity and matter

C'= (8" + H(matter) {go(sv),w(:zz’)} _ 5(33733/)
C, = CC%I‘ 4+ chmatter)

C:O Ca:O

G; =0 The Gauss constraint
of the gauge fields

Still:

H:/(NC‘I‘Naca—l—AiGi)
>

—




The issue of the dynamics

Hamiltonian: 5 /‘; o

H:/dgx(N.CﬂLNa.Ca)
5

Physical observables: {0,C} =0=10,C.}

O = 0(q,p, p,7) 10 \

— H —



Solution to the dynamics issue:
the relational observables

1. J. Kijowski (1990) - deparametrization of GR
2. C. Rovelli (1991) - initial values as observables

3. B. Dittrich (2006) - systematization
4. T. Thiemann (2006) - the book

5. A. Dapor, W. Kaminski, J. Lewandowski,
and J. Swiezewski, (2013) - the subject revisited,
several wrong statements pointed out and corrected

6. Bodendorfer, Duch, Lewandowski, Swiezewski (2016) -
new idea, geometric construction of Dirac observables,

example: a Gauss observer



The Gaussian gauge

Radial coordinates in X

Impose gauge conditions:

Qrr = 17 dr9 — Qr¢ — 0
rT 1

— Zp% =
p 2pa

Bodendorfer, Duch, Lewandowski, Swiezewski 2016



The Gaussian observer Iin spacetime

observers coordinates spacelike geodesic in rest
(t,7,0,0) |
“ r ‘
0, p,t = const
4
Observables: obsérver’s t observer's time
' angles

O=p,nr0,0) gos(x(t,rb o). .

Dynamics: OO

ot

Observer’s world line
in the spacetime




Non-commuting of the corresponding
observables

{o(x(t,r,0,0)), o(x(t,r',0,p))} :/dr’.’.....




Gaussian observer’s symmetries:
deformed Poincare

Every translation and infinitesimal Lorentz rotation
t €Ty, M, 1€ so(g(po))
Defines an infinitesimal diffeomorphism of X

X(tvl)
preserving the observer’s coordinate system.

XD O] — O
[X(t,O)’X(t’,O)' _ y(0,07)

")) = t°t"” Rag," (po)

Deformation



Deparametrization by a massless KG-scalar field

2

T 1
C — - ab _I_Cgr -
oy m—h(g,p) =0
Co=mpq,+C*(q,p)=0 —
{h(x), h(y)} =0
Physical states
(2~ hla.p) o
Z(SQO q,P)) ¥ =0 é \I!(q,go):@ﬁfd xhgpw(q)
C, U =0 U(f*q) = ¥(q), s
D h 5 (.1 sical observables
[07 25¢ h(q’p)]: 0 Phy | ob bl
0, C) =0 —> O = et [ 7heg(q, pyeh [ d'ahe

o(f*q, f*p) = o(q,p)



Dynamics by deparametrization

/\

oo+t Om0(t) meh f TG (g pe= i [ & ah(@+)

/\

H(qp)t (q,p)e” 7

H = / hd®z
n summary:

ohysical states are diffeomorphism invariant

¥ (q)
The dynamics is defined by ¢ —= ¢+t and H

< O(t) >= < e

L H(q, p)t‘

WY >

Rovelli - Smolin (1993), Kuchar - Romano (1995),
., Domagala-Dziendzikowski-Lewandowski (2011)



Connection-frame variables

1 1
Se,w) = A /M ergxre Nel NQEE T / e' Ne' ANQpy
M

A

Palatini

I[,J...=0,..3

Wrg — —WJir deJ—I—wIK/\wKJ = QIJ



Loop quantum gravity

@ General relativity in Ashtekar-Barbero variables

© LQG framework
o LQG Hilbert space & solutions of the kinematical constraints
o Implementation of the scalar constraint

@ Non-symmetric constraint operator: Regularization
@ Adjoint operator & symmetric constraint operator

© Summary, applications



Loop quantum gravity

@ General relativity in Ashtekar-Barbero variables



General relativity in Ashtekar-Barbero variables

Action of 3+1 gravity

S = /dt/d3 [ Al B¢ — (AjGj+N“Ca+NC)}

Ashtekar-Barbero variables

{AL(z), B (y)} = kBSL8%o(x,y),  k=8nG

Constraints

1
Gj(z) = ﬁDa B () — Gauss constraints
I b _
Ca(z) = ﬁFab () E; () — Vector constraints

Y pk papgt
C(z) = 2]‘?162 < k|d:(E})|J (z) + (1 — 8,32) \/ |det(Ef)|R(a:) — Scalar constraints

s: spacetime signature

[Barbero (1994)], [Assanioussi, JL, Mdkinen (2015)]



General relativity in Ashtekar-Barbero variables

G(A) = /d3mA"’(m)Qi(ac) , O = /dSzNa(z)Ca(z) , C(N) = /dSmN(m)C(z),
P} P P}
The Gauss constraints generate:
A'=g tAg+g 'dg, E' =g 'Eg, g€ C(Z,50(2)
The vector constraints generate:
A'=p"A, E = o_'E, ¢ € Diff(%)

{9(A),9(AN} =G(IA,A]),  {C(MD),C(N)} = C(LyN),

{G(A),G(N)} = —G(LgA), {CW),C(N)}=C(LyzN),

{6(A), C(N)} =0, {C(M),C(N)} = C(q*°[NM, — MN 4]).




General relativity in Ashtekar-Barbero variables

G(A) = /d%A"(x)gi(x) , G(¥) = /d% N%(@)Ca(z), C(N)= /dSmN(x)C(z),
P} P P}
The Gauss constraints generate:
A'=g tAg+g 'dg, E' =g 'Eg, g€ C(Z,50(2)
The vector constraints generate:
A =¢p"A, B = ¢

{9(A),9(AN} =G(IA,A]),  {C(D),C(N)} = C(LyN),

{60, ()} = —G(LzA), {C(M),C(N)} = C(LyzN),

{6(A), C(N)} =0, {C(M),C(N)} = C(q*°[NM, — MN 4]).

'E, ¢ € Diff(%)

Holonomy-flux algebra

|

he[A] = Pexp (7/1427’,; dza> , Pse = Efgeabcgi(m)Ef(m)dmb/\dxc;

The functions
V(A) = Y(he [A], ..., hey, [A])

where {e1, ..., e, } =: I are all embedded graphs in X, form the algebra Cyl.




General relativity in Ashtekar-Barbero variables

Holonomy-flux algebra

{D(he(A)), Ps.e(B)} = —3 D(he(A))D' (&(z0))

The fluxes become derivations
Ps , : Cyl = Cyl




Loop quantum gravity

@ General relativity in Ashtekar-Barbero variables

© LQG framework
o LQG Hilbert space & solutions of the kinematical constraints

© Summary, applications



Hilbert space

Kinematical Hilbert space

Our Diff(X) invariant integral defined on Cyl

[wpa = [dg...dgaiior, ... on),

gives rise to the kinematical Hilbert space .#;y:

Hin = Cyl = UCylr = @Hr
T T




Hilbert space

Kinematical Hilbert space

Our Diff(X) invariant integral defined on Cyl

[wpa = [dg...dgaiior, ... on),

gives rise to the kinematical Hilbert space ##,:

Hin 1= Cyl = UCylr = @Hr
T T

Hilbert space of SU (2)-gauge invariant states

The space of solutions of the quantum Gauss constraint operator is the subspace Jﬁﬁ C Hin
of gauge invariant functions. Can be obtained by the averaging:

(5= 0)(A) = / dgi...dgib(g5, hey (A)giy s -, 05 e, (A)gi,)

HE = D #E
I

[Ashtekar, JL (1993)]



Hilbert space

J1,72,7J3, - € %N, tev@,; Vj, ® @, V;; [Rovelli, Smolin (1995)], [Baez (1995)]



Mathematical structures

Mathematical structures

Cyl with the sup-norm defines an Abelian C*-algebra. The integral [ DA defines a Diff(33)
invariant measure on the Gel'fand spectrum.
[Ashtekar, JL (1993)], [Marolf, Mourao (1994)], [Baez, Sawin (1995)]

The fluxes and Cyl define a quantum *-algebra .A obtained by replacing

The algebra .A admites a unique diffeomorphism invariant state
w:A—=C

Our kinematical quantization is equivalent to the GNS with that state.
[JL, Okolow, Sahlmann, Thiemann (2005)]




The spatial diffeomorphism invariant states

Hilbert space of spatial diffeomorphism invariant states JYD%

The space of solutions to the vector constraints is constructed through group averaging using a
rigging map 7,

vroo— S (Ule)r] = n(r)

n
' (o] eDiff/TDiffr

nr - averaging coefficient.
Then the space of the Gauss and spatial diffeomorphism invariant states is defined as

Ay = (A4S) C Cyl*

[Ashtekar, JL, Marolf, Mourao, Thiemann (1995)]
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The spatial diffeomorphism invariant states

Hilbert space of spatial diffeomorphism invariant states /YD(l';t

The space of solutions to the vector constraints is constructed through group averaging using a
rigging map 7,

vroo— S (Ule)r] = n(r)

n
' (o] eDiff/TDiffr

nr - averaging coefficient.
Then the space of the Gauss and spatial diffeomorphism invariant states is defined as

Ay = (A4S) C Cyl*

[Ashtekar, JL, Marolf, Mourao, Thiemann (1995)]

° J%Ci’;f is not preserved by any operator of the form o (IV), because of the lapse function N.

o In case of a scalar constraint operator, this is a serious issue in the treatment of several
questions such as self-adjointness and spectral resolution.




The Hilbert space J£5

VX

Solution: PRD 91, 044022 (2015) [Arxiv: 1410.5276], JL, Sahlmann

@ Construct a (dual) space of "partially" diff. invariant states that is preserved by such scalar
constraint operator.




The Hilbert space J£5

VX

Solution: PRD 91, 044022 (2015) [Arxiv: 1410.5276], JL, Sahlmann

@ Construct a (dual) space of "partially" diff. invariant states that is preserved by such scalar
constraint operator.

Hilbert space of partially Diff. invariant states J£S$

Average only w.r.t. diff. that act trivially on the vertices of the graph of a given state,

1
vr = > (U()vr| = n(wr).
T[] €Ditfy ) /TDittr

The space of the Gauss and partially diff. invariant states is defined as J£$ := 7 (A5,

Ho = PHE, XCI, [X[<oo.
X

The resulting Hilbert space is preserved by every quantum scalar constraint operator

C(N) : Hx — Hnx

11/21



The Hilbert space J£5

VX

Solution: PRD 91, 044022 (2015) [Arxiv: 1410.5276], JL, Sahlmann

@ Construct a (dual) space of "partially" diff. invariant states that is preserved by such scalar
constraint operator.

Hilbert space of partially Diff. invariant states J£S$

Average only w.r.t. diff. that act trivially on the vertices of the graph of a given state,

bro— S0 (Ue)er] = ().

n
F [¢] €Diffyy () /TDiffr

The space of the Gauss and partially diff. invariant states is defined as J£$ := 7 (A5,

Ho = PHE, XCI, [X[<oo.
X

The resulting Hilbert space is preserved by every quantum scalar constraint operator

C(N) : Sy — Hin

@ The treatment and discussion of the properties of the constraint operator is generalized
from %Céf to A5,

o CT(N) is densely defined in £S5 —s; that allows symmetrization.




Loop quantum gravity

@ General relativity in Ashtekar-Barbero variables

© LQG framework

o Implementation of the scalar constraint

© Summary, applications



Regularization of the scalar constraint

1
2kB2
5

Ezngf(iU)EJb(if)Ffb(fﬁ)

o) = [det E(z)]

deN(x)( + (1 —562) \/|detE(ac)|R(x))7



Regularization of the scalar constraint

Ezngf(iE)EJb(ﬁ)Ffb(fﬁ)
|det E(x)|

1
2kB2
5

C(N) = deN(x)( +(1—sﬂ2) \/|detE(ac)|R(x)>7

Euclidean part

617kEf(I)E;)(x)Ffb(m)
Tl B(2)]

cEN)= [ &z N(z)
/

@ Thiemann's shuffle

Eijk:Eg(z)E?(x) 2

sgn(det(e)) Zeaberak @), vy;
Tdet B ()] k :

® Fap —> hayy s

@ The loop a1, does NOT overlap with the
graph of the state in the regularization;

@ Tangentiality conditions for the assignment of
a loop at a given node.



Regularization of the scalar constraint

€ij B¢ (z)Eb () FF (
W) = gz [ e (2 (|;etjE((az)| () (B () )
p

Euclidean part Lorentzian part

a b k
P = [N €uk 7 (2) By (2) Foy () o) = [ d N(@)y/|det B@)] B(@)
[det B(a))] 4
=
@ Thiemann's shuffle @ Regge's approximation
ciinEX(x)EL () 2 @ External regularization;
an(det(e) — 1~ I = Zcaberak(a) v
seeete | det E(x)]| k : @ —— The curvature operator;

[E.A, M.A,, J.L. PRD 89, 124017 (2014), arXiv:1403.3190]
® Fap —> hayy s

@ The loop a1, does NOT overlap with the
graph of the state in the regularization;

@ Tangentiality conditions for the assignment of
a loop at a given node.



The Euclidean operator

@ choice of a specific coordinate plane (adapted
frame) with a proper routing;

@ imposition of tangentiality conditions;

14/21



The Euclidean operator

@ choice of a specific coordinate plane (adapted
frame) with a proper routing;

@ imposition of tangentiality conditions;

With this prescription
o the loop assigned to a pair of edges is unique up to diffeomorphisms;

o This prescription makes a loop assigned to a given pair of edges perfectly distinguishable
from any other loop at the same node;

« 2 3 MO0, 10 B0 )

vey I,J,K Ey

E,, - averaging coefficient [ - arbitrary spin representation.

14/21



Non symmetric scalar constraint operator
Euclidean part

CP(N) = lim [éf(N)] :

@ Gauge invariant and diff. covariant;

Graph changing without creating vertices;
@ Preserves 75 ;

@ Densily defined on 5.



Non symmetric scalar constraint operator

CE(N) := Jlim [C‘f(N)] CH(N)T, o< 3 N(v)r [LIJ(Ei) C;)IJ(Ei)} vy
vE
eIﬁeJ:v Lengtho}:gm\or Angle operator

contains V —1

@ Gauge invariant and diff. covariant; @ Gauge invariant and diff. covariant;
@ Graph changing without creating vertices; @ Non-graph changing;

@ Preserves 75 ; @ Preserves £S5 ;

@ Densily defined on 5. @ Densily defined on S .

Ky - averaging coefficient



Non symmetric scalar constraint operator

CP(N) = Jim [c (N)} CE(N)T, o 3 N(w)k, [L”(Ei) é)u(Ei)} v,
veE
CIﬁﬂ;:U Lenglho]:Em\or Angle operator

contains V —1

@ Gauge invariant and diff. covariant; @ Gauge invariant and diff. covariant;
@ Graph changing without creating vertices; @ Non-graph changing;

@ Preserves ﬁnx 3 @ Preserves L%”V[x 3

@ Densily defined on .%’j,g @ Densily defined on %ﬂg

Ky - averaging coefficient
C(N) :=CE(N) + (1 — sB82H)CE(N)

@ The scalar constraint operator does not create new vertices but new links;

@ Has a similar action to the scalar constraints in the symmetry reduced cosmological models

@ The treatment and discussion of the properties of the constraint operator can be performed
directly in J£G

Vix




Symmetric constraint operator

Adjoint operator of C‘(N)

At this level we define the operator C'(N) on a dense domain Z[C/(N)] in J£S.

16/21



Symmetric constraint operator

Adjoint operator of C‘(N)

At this level we define the operator C'(N) on a dense domain Z[C/(N)] in J£S.
To construct a symmetric Hamiltonian operator, we choose to use the adjoint operator C'T (V)
in S

VIX

cty s 2 [CH)] € 4G — A

2[CT(N)] is dense in 4G

VIX *
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Symmetric constraint operator

Adjoint operator of C'(N)

At this level we define the operator C'(N) on a dense domain Z[C/(N)] in J£S.
To construct a symmetric Hamiltonian operator, we choose to use the adjoint operator C'T (V)
in S

VX VIX

CH(NY: 9 [CT(N)] c #S — xS

2[CT(N)] is dense in 4G

VIX *

Symmetric extensions

Csym(N) := Sym(C(N), CT(N))

Typical example: %(C(N) + CT(NV))




Loop quantum gravity

© Summary, applications



Summary, applications

We have introduced the Hilbert space

H\ﬁx = @ H{vl,.”,vk}

{v1,...,01}

which admits quantum volume element, quantum Ricci scalar, quantum scalar constraint
[ #:Vi@N@), [ @a/i@R@NGE), [ @tENE),
= 5 )

as well as physical observables containing Féb .
Solutions to the vacuum constraint

<U|C(N) =0

are defined via the spectral decomposition

Ha = PHe




Summary, applications

Applications

Gravity deparametrized by a coupled massless scalar field or non-rotating dust amounts to a
quantum theory defined in &, by the equation

. d
i—
dt

H= /d3m/—2\/50

Hzf/d%é,

v = HU,

with the Hamiltonian being

respectively.

[Domagata, Dziendzikowski, JL (2012)], [Assanioussi, JL, Mdkinen (2016)]
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Summary, applications

Perturbative dynamics in deparametrized models

Quantum evolution:

U(t) := exp|—itH] , H = f(8) (C’L + ﬁC’E)

@ Transition amplitudes: <% (t) = (¥ | U(t) |w;)
@ Quantum observables: (O'(t))

o Perturbation theory for the dynamics:

A A N A 1
Hy = cL , V.=CF s €= ———
1+ 32

H=fB)(Ho+eV) el <1eB82>1

— () = L @) + e A O +E LD (W) + ..

[M. Assanioussi, J. Lewandowski and I. Mcdkinen (2017)]




Summary, applications

Rainbow gravity

Quantization of matter and gravity: Schroedinger-like equation

o d .
_zha\IJ:{Ho——<H ® 72 + (k,m)@qﬁ%)}@

— U =V, ® p, where ¢ € La(R, doy) and ¥, € H¢ evolves via Schroedinger-like
equation —id¥, /dt = H,¥,. This being the case, we can trace away the gravitational part
and obtain an equation for the matter part only:

. d 1 . . - -
ih=o=H"p, A= [(\IJO\HO L, )a2 + (%\Q(k,m)\q}omi]
On the other hand, constructing regular QFT on such a Robertson-Walker type spacetime, one
obtains for mode & of ¢:
mi — freff feff .= = v
dt@ - E,mtp ’ E,m T 2 a

N o4 ~6

— (k%a” + m2a )(;5

In other words, we can replace the fundamental theory described with regular QFT on curved
spacetime, provided that the terms in the two Hamiltonians, fundamental and effective, match.
[M. Assanioussi, A. Dapor and J. Lewandowski (2015)]




Thank you



The scalar field deparamtrizes a space
dimension rather than time

/d3xN(CI3) \/@a(l’)@b(x)EZa(m)ES(x) Ur @[ > _

sm3 (3 Viclie +1) [ Nldel) wr alp >

e - runs through the set of the edges (links) of the
spin-network 1’
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