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Exploring spacetime at the Planck scale

Our main goal is to construct a theory of Quantum Gravity, a
fundamental qguantum theory underlying General Relativity.

My talk today is about the new concept of guantum curvature, a
quasilocal observable in a nonperturbative, Planckian regime,
where spacetime is no longer described by a smooth metric g..(x).

| will explain the idea in the continuum and then implement it on
various piecewise linear (PL) spaces, including the equilateral
configurations of (Causal) Dynamical Triangulations. CDT is a
candidate theory of quantum gravity, based on a non-perturbative
path integral, where our “quantum Ricci curvature” can be
calculated in a straightforward way. However, the concept is
applicable much more widely, and you need not know about CDT.

(joint work with Nilas Klitgaard, to be published)



The case for quantum observables

Even assuming we had resolved all “technical difficulties” in specific
guantum gravity theories, we still face the key issue of having to
construct meaningful observables to quantify the physical quantum
properties of gravity and spacetime (or whatever remains of them)
at the Planck scale. These are prior to the development of any true
QG phenomenology and should

1. be purely geometrical (coordinate-invariant, background-indept.),

2. have finite, nonzero expectation values in the ensemble,

3. be measurable reliably in the window accessible to quantitative
evaluation (simulation or other numerical methods),

4. have a (semi-)classical limit.

We have such observables, e.g. in CDT, but they are rather coarse
(dynamical dimensions, volume profiles) and should be comple-
mented by quantities carrying more local geometric information.



The case for CDT

e CDT quantum gravity is a perfect setting
to study such nonperturbative quantum
observables. Its regularized path integral
(“sum over spacetimes”) is defined purely
geometrically in terms of simplicial manifolds that are gluings of
identical D-dimensional flat simplices (= “Random Geometry”).
Observables are evaluated quantitatively by Monte Carlo simulation.

piece of a causal triangulation in 3D

e Since lengths and volumes come in discrete units, measuring is
often reduced to simple counting. (C)DT geometries are of “Regge
type”, i.e. continuous, but with curvature singularities.

e This looks like a conservative setting, but allows for nonclassical

behaviour and noncanonical scaling. In fact, we have learned that

such behaviour is generic and often prevents the existence

of a classical limit when the UV-cutoff a is removed. m
building block in 2D: - >




The case for curvature

e Curvature is a crucial concept in describing classical spacetime
geometry. It is a complex, derived object. Computation of the
Riemann tensor R¥y.,[g,0g,0%g;x) requires a smooth metric g.

® Finding a meaningful notion of “guantum curvature”, applicable in a
more general context, has so far received little attention. (Note that
definitions in terms of deficit angles are of limited usefulness.)

® |s there a classical characterization of curvature that can be used to
obtain a coarse-grained, robust and computable notion of quantum
curvature in nonperturbative quantum gravity?



The case for curvature

e Curvature is a crucial concept in describing classical spacetime
geometry. It is a complex, derived object. Computation of the
Riemann tensor R¥y.,[g,0g,0%g;x) requires a smooth metric g.

® Finding a meaningful notion of “quantum curvature”, applicable in a
more general context, has so far received little attention. (Note that
definitions in terms of deficit angles are of limited usefulness.)

® |s there a classical characterization of curvature that can be used to
obtain a coarse-grained, robust and computable notion of quantum
curvature in nonperturbative quantum gravity? YES.

e N.B.: we are working in a Riemannian context (“after Wick rotation”)



The key idea (classical):

On a D-dimensional manifold (M,g,,), compare the distance of two
small (D-1)-spheres with the distance 6 of their centres.

Step 1: v, w unit vectors at p, vlw
9 B 5>0
EW , w’ is the parallel transport of w along v
Sv 2] 7 .
5 p’ = expp(6v), q = expp(ew),
p’ = there is a unique point g’ = expy(ew’)
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then we have d(q,q') = 5(1 —~ 65[((1},21}) o - 562)), e, 0 — 0

where K(v,w) is the sectional curvature corresponding to (v,w),

R o) = < R(v,w)w,v>
b Syl < w10 e~ 2




Step 2:

Let S¢, denote the e-sphere
of all points at geodesic
distance € from its centre p.
Then the sphere distance to
another e-sphere 5%, whose
centre p’ lies at a distance
d(p,p’) = 6, and whose points
are obtained by parallel transport is defined by

1 .
d Se Se/ N dD_l h d / (note.un.lque ;
( Dol ) UOZ(Sg) /S; q \/7 (q’ q )’ association q < q’)
which for small 6, € is given by

2

€ € € Y
&S ) — 5(1 N Ric(v,v) + O(e® + 562)),

where Ric(v,v) is the Ricci curvature of the vector v, i.e. the average
of the sectional curvature K(v,w) over all two-planes containing v.



This formula,
2

d(S,,Sy) = (5(1 — 2€—D Ric(v,v) + O(e* + (562)>,
captures our key statement: “On a D-dim. manifold with positive
(negative) Ricci curvature, the distance between two nearby (D-1)-

spheres is smaller (larger) than the distance between their centres.’
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This observation is the starting point for Ollivier’s “coarse Ricci
curvature” (Y. Ollivier, J. Funct. Anal. 256 (2009) 810-864).
— c.f. work by C. Trugenberger, G. Bianconi (“QG from graphs”)]

However, his definition involves “transport distance” (in absence of
parallel transport), which is very difficult to compute in practice.

Instead, we are looking for a notion of “quantum Ricci curvature”
which is computable, scalable (also works for non-infinitesimal scales)
and robust.



Defining quantum Ricci curvature

Our classical starting point is the average sphere “distance”

- 1 1
d(SE. 5S¢, = d % h des g Vi dlg o
(Sp: Sip) vol (S5) UOZ(S;/) /Se g17 S, L (@4);

which uses only volume and distance measurements, and therefore
can be implemented straightforwardly on general metric spaces.

We then set € = 6, corresponding to overlapping spheres, @
and define the “qguantum Ricci curvature Kj at scale 6” by

4(S2, 2,)
)

where ¢, appears to be a non-universal constant depending on the
space under consideration. We have evaluated K, on classical
model spaces, and tested it on a variety of (mainly 2D) PL spaces
(flat regular tilings, “nice” and “not-so-nice” triangulations).

—we i (pp' ) d=dipp) ¢l



Behaviour on constantly curved model spaces

Normalized sphere distance for 2D model spaces, for small €, 6:

diSe, §°,)
5
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)? + h.o. spherical case
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- h.o. hyperbolic case

This is consistent with the general formula given above for Ric =1/p°.

Normalized average sphere distance for 2D model spaces, for e = 6

and small g, 6:

: 1.5746
0 Qo

4S5, Sy) — { 1.5746 — 0.1440(
0 1.5746 + 0.1440(

D o [
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flat space
+ h.o. spherical case

+ h.o. hyperbolic case

This is qualitatively similar to the sphere distance results for € = 6.
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Normalized average sphere distance for 2D model spaces, for e = 6

and small g, 6:
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This is qualitatively similar to the sphere distance results for € = 6.



Behaviour on constantly curved model spaces

spherical
flat case P
case
new - new

Comparing sphere distance and average sphere distance for any (6,¢).
Observe the qualitative similarities along the diagonals 6 = &.



Beh

aviour on constantly curved model spaces
(after setting €=0)

‘_j hyperbolic space

average sphere

| Natspace distance d in the
ot continuum (2D)
I sphere
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hyperbolic space: K4 <0

normalized average sphere
distance d/¢ in the continuum (2D)

flat space: Kq=0

sphere: K4 >0

recall

d
E-— cq(1 — Ky)




“Nice” spaces l: regular triangulations

Example: sphere distance S% SO

on a 2D square lattice (6=3) ‘

d
5
<5 A square lattice in 2D
21F co i :
| S ool latlice In 2D We measured normalized average
20F : —
sphere distances d/d for regular
i flat lattices in 2D and 3D.
1.7;— 5
b, AR, - S Their typical behaviour is
e VS . E 1 :
53 5 10 15 200 d/5 = Cq -+ 5—2-C0rrEChOnS

(cq not universal).



How can we construct equilateral random geometries
that are “close” to a given smooth classical geometry?



“Nice” spaces Il: Delaunay triangulations

A Delaunay triangulation is a triangulation T of a finite point set
P c R’ (the vertices of T) if the circumcircle of every triangle

contains no points of P in its interior. It maximizes the minimum
angle and avoids thin, elongated triangles

Our procedure:

1. generate P using Poisson
disc sampling on a 2D
constantly curved space
(plane, sphere, hyperboloid)

2. construct the Delaunay
triangulation of P

3. setall edge lengthsto 1




How nice are the resulting PL spaces?

Our construction generates random Before setting £=1:
triangulations with mild (small-scale) .
local curvature fluctuations. .

probability distribution of edge lengths £ ina
Delaunay triangulation of flat space, N=6.2k
00 1.1minDist 13minDist 1 _5minDist 1.7minDist 1.9minDist I 2 1minDist 2.3minDist
dmin dein
Before and after: After:
P 120- _
0.4:. 100:' /.//V/
: - _,r/
03} % -
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0.1 - 20 i/,.'*’/‘
0.0 o e e L e e e e I. R .l il D S Ry e I N sy e O‘
<4 5 6 7 8 9 10 2 4 6 8 10 12 14
distribution of vertex orders volume c of geodesic circles of radius 6:

(flat case) linearity implies flat-space behaviour



Measuring the quantum Ricci curvature K,

1.66

1
1.64

o recall that
1.62 5

“flat” regular, hexagonal lattice d/o = c.(1 — K.(0
1 /8= cg(1 — K, ()
1‘: E . - . “
: <+—— flat continuum space
1.96 {
FTRETAAESREGN:

P g g R S e L NG e O “flat” random triangulation

comparison of measurements of the
normalized average sphere distance d/§

We obtain a good matching with continuum results, with discretization
artefacts confined to the region 6 < 5, and K; = 0 elsewhere.



Measuring the quantum Ricci curvature, ctd.

i: normalized average sphere
A distance d/d for random
pEf R g AT Ry s triangulations modelled on flat
_ % -+ FlatTriangulation  ¢p3ce and spheres of various
1ol : : - Large Sphere sizes
i - Sphere
i - Small Sphere
0.5t
-
----------------------------- 6 -
- 4 6 8§ 10 12 14 5 “hyperbolic” space (yellow)
: “flat” space (blue)
1.6631#
rlormalized average sphere distance 1.64:—
d/§ for random triangulations :
modelled on flat and hyperbolic 1‘62;'
space 1.60F
158F 4
We observe good el 4
“averaging properties”. s nbit LE LA,
2 4 6 8 10 12



A true quantum application of Ricci curvature

e consider a 2D toy model of (Euclidean)
guantum gravity, with

ek — / Dg e~ voH9)
g

eom. g

e nonperturbative path integral over
geometries with fixed topology S?, a typical “universe” in DT
- - : : uantum gravity in 2D
soluble via “Dynamical Triangulations” ; e

e path integral configurations are arbitrary gluings of 2D equilateral
triangles; in the continuum limit, “typical” ensemble members are
highly nonclassical, fractal and nowhere differentiable geometries
with spectral dimension 2 and Hausdorff dimension 4

e the quantum dynamics is governed by branching “baby universes”



Quantum Ricci curvature in 2D DT QGravity

(d/6)
We have measured the
expectation value measured data: blue
< (S(g S5 )/5> continuum sphere: yellow

of the normalized average
sphere distance in the
ensemble of 2D Euclidean DT

guantum gravity. :

Using a system of 20.000 triangles, we found a surprisingly good fit of
the data with those of a continuum sphere in 4D(!), with positive
curvature. This points to a very robust behaviour of quantum Ricci
curvature. (N.B.: the S°, in general do not even have spherical
topology for 6>1, but are multiply connected.)



Summary

We have defined a novel notion of “gquantum Ricci curvature at scale
6”, based on the average sphere distance d(S9, 59)/§, and have
investigated its properties in both a classical and quantum context,
mostly on two-dimensional geometries. The results look promising:

e the prescription is straightforward to implement on piecewise flat
spaces and is feasible computationally;

® on nice piecewise flat spaces, lattice artefacts can be controlled
and smooth results are reproduced on sufficiently large scales;

® “robustness” has been found in the case of the highly quantum-
fluctuating quantum ensemble of 2D Euclidean DT quantum gravity.

The next step is an implementation in 4D Causal Dynamical
Triangulations, a nonperturbative candidate theory of quantum
gravity, to understand and quantify its quantum geometry.



Thank you!
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