ADS 4D/BPS 3D Correspondence

John Terning
with Csaba Csaki, Yuri Shirman
Outline

A Brief History of Monopoles

SUSY: 4D \rightarrow 3D $\times S^1$

N=2 SUSY in 4D

Standard Model

Conclusions
Figure 1. Static configuration of an electric change and a magnetic monopole.

which follows from symmetry (the integral can only supply a numerical factor, which turns out to be $4\pi^2$). The quantization of charge follows by applying semiclassical quantization of angular momentum:

$$J \cdot \hat{R} = eg c = n\hbar$$

$n = 0, \pm 1, \pm 2, \ldots$ (2.4a)

or

$$eg = m'\hbar c, m' = n^2.$$ (2.4b)

(Here, and in the following, we use m' to designate this “magnetic quantum number.” The prime will serve to distinguish this quantity from an orbital angular momentum quantum number, or even from a particle mass.)

2.3. Classical scattering

Actually, earlier in 1896, Poincaré [3] investigated the motion of an electron in the presence of a magnetic pole. This was inspired by a slightly earlier report of anomalous motion of cathode rays in the presence of a magnetized needle [32]. Let us generalize the analysis to two dyons (a term coined by Schwinger in 1969 [11]) with charges e_1, g_1, e_2, g_2, respectively. There are two charge combinations $q = e_1 e_2 + g_1 g_2, \kappa = -e_1 g_2 - e_2 g_1 c$. (2.5)

Then the classical equation of relative motion is (μ is the reduced mass and v is the relative velocity)

$$\mu \frac{d^2}{dt^2} \mathbf{r} = q \mathbf{r} \mathbf{r}^{-3} - \kappa \mathbf{v} \times \mathbf{r} \mathbf{r}^{-3}.$$ (2.6)

The constants of the motion are the energy and the angular momentum,

$$E = \frac{1}{2} \mu v^2 + q \mathbf{r}, J = \mathbf{r} \times \mu \mathbf{v} + \kappa \hat{r}.$$ (2.7)

Note that Thomson’s angular momentum (2.3) is prefigured here. Because $J \cdot \hat{r} = \kappa$, the motion is confined to a cone, as shown in figure 2. Here the angle of the cone is given by

$$\cot \chi = \frac{l}{|\kappa|}, l = \mu v_0 b,$$ (2.8)

where v_0 is the relative speed at infinity, and b is the impact parameter. The scattering angle θ is given by

$$\cos \frac{\theta}{2} = \cos \chi \frac{|\kappa|}{|\kappa|} \sin \left(\frac{\xi}{2} \cos \frac{\chi}{2}\right).$$ (2.9a)
Dirac

charge quantization

$qg = \frac{n}{2}$

Proc. Roy. Soc. Lond. A133 (1931) 60
\'t Hooft-Polyakov

topological monopoles

hedgehog gauge

\[\phi^a = \hat{r} v h(\nu r) \]

\[W_i^a = \epsilon^{air} \hat{r}^j \frac{f(\nu r)}{gr} \]
\[\phi^a = \hat{r} v h(vr) \]

\[W_i^a = \epsilon^{air} \hat{r}^j f(vr) \frac{f(vr)}{gr} \]

\[U^\dagger \tau^a \phi^a U = v h(vr) \tau^3 \]

\[U = \frac{1}{\sqrt{2}} \left(\sqrt{1 + \hat{r}_3} I + i \frac{\hat{r}_2 \sigma^1 - \hat{r}_1 \sigma^2}{\sqrt{1 + \hat{r}_3}} \right) \]
`t Hooft-Mandelstam

magnetic condensate confines electric charge

Phys. Rept. 23 (1976) 245
4D \rightarrow \text{3D} \times S^1

\text{SUSY SU(N) with F flavors}

W_\mu^a \rightarrow \tilde{W}, \phi^a

\text{monopole solution}
$$4D \rightarrow 3D \times S^1$$

Wick rotation

monopole solution
4D \rightarrow 3D $\times S^1$

compactify

monopole solution
N-1 Embeddings of SU(2)

N-1 diagonal generators

\[
\begin{pmatrix}
\frac{1}{2} & 0 & 0 & \cdots \\
0 & -\frac{1}{2} & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & \cdots \\
0 & \frac{1}{2} & 0 & \cdots \\
0 & 0 & -\frac{1}{2} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \frac{1}{2} & \cdots \\
0 & 0 & 0 & \frac{1}{2} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}
\ldots
\]

monopole solutions
Roots of SU(3)

\[
\mathbf{H} = (T^3, T^8)
\]

\[
\begin{pmatrix}
\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{pmatrix}
= \alpha \cdot \mathbf{H}
\]

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{pmatrix}
= \beta \cdot \mathbf{H}
\]

\[
\alpha = (1, 0) \quad \beta = (-\frac{1}{2}, \frac{\sqrt{3}}{2})
\]
N-1 Embeddings of SU(2)

N-1 diagonal generators

\[\alpha_1 \cdot H \]
\[\alpha_2 \cdot H \]
\[\alpha_3 \cdot H \]
\[\ldots \]

monopole charges

\[\alpha_1 \]
\[\alpha_2 \]
\[\alpha_3 \]
\[\ldots \]
Roots of SU(3)

\[H = (T^3, T^8) \]

\[\langle \phi \rangle = a \cdot H \]

\[a = v_1 \alpha_1 + v_2 \beta \]

\[\alpha = (1, 0) \quad \beta = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \]
Roots of SU(3)

\[H = (T^3, T^8) \]

\[\langle \phi \rangle = a \cdot H \]

\[a = \nu_1 \alpha_1 + \nu_2 \beta \]

\[\alpha = (1, 0) \quad \beta = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \]
Monopole Solutions

\[\langle \phi \rangle = a \cdot H \]
\[a = v_1 \alpha + v_2 \beta \]

\[\phi = v_1 \alpha \cdot H + \hat{r}^a T^a_\beta v_1 h(v_2 r) ; \quad T^3_\beta = \beta \cdot H \]

\[\phi = v_2 \beta \cdot H + \hat{r}^a T^a_\alpha v_2 h(v_1 r) ; \quad T^3_\alpha = \alpha \cdot H \]
4D \rightarrow 3D \times S^1

Wick rotation

monopole solution
$4D \rightarrow 3D \times S^1$

KK monopole solution
\[3D \times S^1 \rightarrow 4D \]

N-1 monopole solutions + KK monopole

\[\rightarrow 4D \text{ instanton as } R \rightarrow \infty \]
Instanton Zero Modes

2N gauginos

2F quarks
Instanton Zero Modes

2N gauginos

Poppitz & Unsal hep-th/0812.2085
Instanton Zero Modes

\[F = N - 1 \]

\[2N - 2 \]

\[\text{fermion mass} = \frac{\partial W}{\partial Q \partial \bar{Q}} \]
Instanton Superpotential

\[W = \frac{\Lambda^{3N-F} \det Q^\dagger \overline{Q}^\dagger}{|\det \overline{Q}\overline{Q}|^2} = \frac{\Lambda^{3N-F}}{\det \overline{Q}\overline{Q}} \]
$F < N$

$W_{\text{ADS}} = (N - F) \left(\frac{\Lambda^{3N-F}}{\det Q \overline{Q}} \right)^{\frac{1}{N-F}}$

where does this come from?
$W_{3D} = \sum_i \frac{1}{Y_i}$

$Y_i = e^{\mathbf{a} \cdot \alpha_i + i \gamma_i}$

$\phi = \mathbf{a} \cdot \mathbf{H}$

$\partial_m \gamma_i = \epsilon_{mnp} F_{i}^{np}$

$R \to 0$

Finite R

\[W = \sum_{i} \frac{1}{Y_i} + \eta Y_{KK} \]
Mixed Coulomb Branch
SU(3) with F=1

\[\phi = \frac{1}{2} \text{diag}(v, 0, -v) \]

SU(3)→U(1)×U(1)

\[Q = \overline{Q} = \begin{pmatrix} 0 \\ q \\ 0 \end{pmatrix} \]

SU(3)→SU(2)

SU(3)→U(1)

monopoles are confined
Mixed Coulomb Branch
SU(3) with F=1

monopoles are confined
superHiggs mechanism gives fermions masses
Mixed Coulomb Branch
SU(3) with F=1

\[W = \eta Y_1 Y_2 + \frac{1}{Y_1 Y_2 Q\bar{Q}} \]

\[W = 2 \left(\frac{\eta}{\text{det } QQ} \right)^{\frac{1}{2}} \]
Mixed Coulomb Branch
SU(3) with F=1

$q \gg \frac{1}{R}, v$

SU(3)→SU(2) in "4D", F=0

$\Lambda^8 = \Lambda^6_L q^2$

$W = \eta_L Y_L + \frac{1}{Y_L}$

$\phi = a \cdot H$

$a = v(\alpha + \beta)$

matches, since

$Y_L \propto Y_1 Y_2 q^2$

$\eta_L = \frac{\eta}{q^2}$
SU(N) with $F < N-1$

- ϕ has F zeros
- Q, \overline{Q} have F VEVs
- $SU(N) \rightarrow SU(F) \times U(1)^{N-F}$
- $SU(N) \rightarrow SU(N-F)$
- $SU(N) \rightarrow U(1)^{N-F-1}$

- $F+1$ monopoles are confined
- $2F$ gauginos get masses
- $2(F+1) - 2F = 2$
- 2 gaugino legs \Rightarrow ADS super potential
Conclusions

Monopoles are still fascinating after all these years

Confined monopoles relate 3D BPS monopoles to the 4D ADS superpotential