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Figure 1. Static configuration of an electric change and a magnetic monopole.

which follows from symmetry (the integral can only supply a numerical factor, which

turns out to be 4π [27]). The quantization of charge follows by applying semiclassical

quantization of angular momentum:

J · R̂ =
eg

c
= n

!

2
, n = 0, ±1, ±2, . . . , (2.4a)

or

eg = m′
!c, m′ =

n

2
. (2.4b)

(Here, and in the following, we use m′ to designate this “magnetic quantum number.”

The prime will serve to distinguish this quantity from an orbital angular momentum
quantum number, or even from a particle mass.)

2.3. Classical scattering

Actually, earlier in 1896, Poincaré [3] investigated the motion of an electron in the

presence of a magnetic pole. This was inspired by a slightly earlier report of anomalous
motion of cathode rays in the presence of a magnetized needle [32]. Let us generalize

the analysis to two dyons (a term coined by Schwinger in 1969 [11]) with charges e1, g1,

and e2, g2, respectively. There are two charge combinations

q = e1e2 + g1g2, κ = −e1g2 − e2g1

c
. (2.5)

Then the classical equation of relative motion is (µ is the reduced mass and v is the

relative velocity)

µ
d2

dt2
r = q

r

r3
− κv × r

r3
. (2.6)

The constants of the motion are the energy and the angular momentum,

E =
1

2
µv2 +

q

r
, J = r × µv + κr̂. (2.7)

Note that Thomson’s angular momentum (2.3) is prefigured here.

Because J · r̂ = κ, the motion is confined to a cone, as shown in figure 2. Here the
angle of the cone is given by

cot
χ

2
=

l

|κ| , l = µv0b, (2.8)

where v0 is the relative speed at infinity, and b is the impact parameter. The scattering

angle θ is given by

cos
θ
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χ

2
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‘t Hooft-Polyakov

hedgehog gauge
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‘t Hooft-Mandelstam
magnetic condensate 


confines electric charge
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monopole solution

4D -> 3D x S1 
SUSY SU(N) with F flavors

W a
µ ! ~W,�a



4D -> 3D x S1 

monopole solution

Wick rotation



4D -> 3D x S1 

monopole solution

compactify



N-1 Embeddings of SU(2) 

monopole solutions
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N-1 diagonal generators
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N-1 Embeddings of SU(2) 

monopole charges
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N-1 diagonal generators
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Monopole Solutions
h�i = a ·H
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4D -> 3D x S1 

monopole solution

Wick rotation



4D -> 3D x S1 

KK monopole solution



3D x S1 -> 4D 
N-1 monopole solutions + KK monopole

. . .+ + +

+
-> 4D instanton


  as       R ! 1



Instanton Zero Modes

. . .

. . .
2N gauginos

2F quarks



Instanton Zero Modes
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Instanton Zero Modes
. . .
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Instanton Superpotential
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2N-2F=N-1
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Affleck-Dine Seiberg 
Superpotential

F < N

where does this come from?

WADS = (N � F )
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Affleck-Harvey-Witten
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Finite R
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Mixed Coulomb Branch

SU(3) with F=1
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Mixed Coulomb Branch

SU(3) with F=1

monopoles are confined

superHiggs mechanism gives fermions masses

q ⌧ v



Mixed Coulomb Branch

SU(3) with F=1
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Mixed Coulomb Branch

SU(3) with F=1

q � 1

R
, v SU(3)->SU(2) in “4D”, F=0
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SU(N) with F < N-1

SU(N)->SU(F)xU(1)N-F SU(N)->SU(N-F)

SU(N)->U(1)N-F-1

F+1 monopoles are confined

2F gauginos get masses


2(F+1)-2F= 2

2 gaugino legs => ADS super potential


� has F zeros Q,Q have F VEVs



Conclusions

Monopoles are still fascinating 

after all these years


Confined monopoles relate

3D BPS monopoles to


the 4D ADS superpotential 



