9th MATHEMATICAL PHYSICS MEETING:
School and Conference on Modern Mathematical Physics

18 - 23 September 2017, Belgrade, Serbia




Kalemegdan

    Main page

    General information 

    Programme

    Committees

    Lecturers/speakers 

    Participants

    Registration

    Payment instructions

    Travel and visas

    Accommodation

    Practical information

    Poster

    Previous meetings 

    Sponsors

Abstracts

Marko Vojinovic

Gauge protected entanglement between gravity and matter

We show that gravity and matter fields are generically entangled, as a consequence of the local Poincaré symmetry. First, we present a general argument, applicable to any particular theory of quantum gravity with matter, by performing the analysis in the abstract nonperturbative canonical framework, demonstrating the nonseparability of the scalar constraint, thus promoting the entangled states as the physical ones. Also, within the covariant framework, we show explicitly that the Hartle-Hawking state in the Regge model of quantum gravity is necessarily entangled. Our result is potentially relevant for the quantum-to-classical transition, taken within the framework of the decoherence programme: due to the gauge symmetry requirements, the matter does not decohere, it is by default decohered by gravity. Generically, entanglement is a consequence of interaction. This new entanglement could potentially, in form of an "effective interaction", bring about corrections to the weak equivalence principle, further confirming that spacetime as a smooth four-dimensional manifold is an emergent phenomenon. Finally, the existence of the gauge-protected entanglement between gravity and matter could be seen as a criterion for a plausible theory of quantum gravity, and in the case of perturbative quantisation approaches, a confirmation of the persistence of the manifestly broken gauge symmetry.


Organizer:

Institute of Physics Belgrade
(University of Belgrade)

Belgrade, Serbia


Co-organizers:

Mathematical Institute
(Serbian Academy of Sciences and Arts)

Belgrade, Serbia

and

Faculty of Mathematics
(University of Belgrade)

Belgrade, Serbia


E-mail: mphys9@ipb.ac.rs